

Europäischer Fonds für Regionale Entwicklung

Brandenburgische Technische Universität Cottbus - Senftenbera

Efficient stochastic modelling of an axial compressor rotor blades geometrical variability due to manufacturing uncertainties

11th Dresden Probabilistic Workshop

b-tu Brandenburgische Technische Universität Cottbus - Senftenberg

Introduction	3
Geometrical Mistuning Analysis	6
 Fluid Solution (CFD) 	13
 Automated FEM Meshing 	16
 Mistuned Fluid Solution 	
Overview	26

Europäischer Fonds für Regionale Entwicklung

Brandenburgische Technische Universität Cottbus - Senftenberg

Efficient manufacturing variability stochastic modelling

Introduction

Introduction

Brandenburgische Technische Universität Cottbus - Senftenberg

"Efficient stochastic modelling of an axial compressor rotor blades geometrical variability due to manufacturing uncertainties."

- Subject of study:
 - Axial HP compressor blisks and vanes (Rig250 DLR Köln)
- Structure:
 - Analysis of geometric deviations from the nominal design
 - Complex CFD and FEM modelling
 - Aeroelastic analyses considering geometry based mistuning
 - Mistuning studied as blades geometrical offset from nominal design (e.g. tolerances, manufacturing variability)

Introduction

Brandenburgische Technische Universität Cottbus - Senftenberg

"Efficient stochastic modelling of an axial compressor rotor blades geometrical variability due to manufacturing uncertainties."

- Objectives:
 - creation of a stochastic model representative of the measured manufacturing variability;
 - automation of a geometry based model adaptation (FEM, CFD);
 - uncertainty quantification on geometry-dependent aeroelastic analysis.

	Aller
	STITE THE
1	1 The Real
- 7 - 1	
	力了不是
	The way

Europäischer Fonds für . Regionale Entwicklung

Brandenburgische Technische Universität Cottbus - Senftenberg

Efficient manufacturing variability stochastic modelling

Geometrical Mistuning Analysis

Creation of a stochastic model which can represent through a set of variables the mistuned blades. Model based on [1] parameterization method.

- Analysis of geometric deviations for real geometries surfaces.
- Parametrization of rotor blades geometries.
- Description of surface deviations with an optimal amount of variables.
- Geometry reproduction for CFD and FEM models.

Brandenburgische Technische Universität

[1] Lange A., Vogeler K., Gümmer V., Schrapp H. and Clemen C. (2009). "Introduction of a Parameter Based Compressor Blade Model for Considering Measured Geometry Uncertainties in Numerical Simulation." Proceedings of ASME Turbo Expo. GT2009-59937.

Parametrization Method

Brandenburgische Technische Universität Cottbus - Senftenberg

Methodology applied for the parametrization divided in the following main steps:

- radial sections definition;
- camber and thickness distributions over chord;
- distributions description with NACA-like parameters.

Chair of Structural Mechanics and Vehicle Vibrational Technology | Gambitta | Kühhorn

Parametrization Method

Brandenburgische Technische Universität Cottbus - Senftenberg

Methodology applied for the parametrization divided in the following main steps:

- radial sections definition;
- camber and thickness distributions over chord;
- distributions description with NACA-like parameters.
- Geometrical variability modelling.

Geometrical Variability Model

Brandenburgische Technische Universität Cottbus - Senftenberg

Chair of Structural Mechanics and Vehicle Vibrational Technology | Gambitta | Kühhorn

Brandenburgische Technische Universität Cottbus - Senftenberg

Generation of a geometrical variability model over a set of blades scans for the uncertainties representation:

- 153 total blade scans utilized;
- geometrical variability model data:
- model defined as offset from a nominal design;
- correlations between noise variables no longer present;
- possible application to any given nominal geometry;
- automated translation to CFD domain.

- spline degree: 2
- noise variables: 18

Rank Correlation Matrix

Model Reconstruction Error

Evaluation of the reconstruction error model-to-measure for one of the blades in the dataset:

- consistent error for different blades;
- optimal compromise between number of variables and accuracy.

Europäischer Fonds für . Regionale Entwicklung

Brandenburgische Technische Universität Cottbus - Senftenberg

Efficient manufacturing variability stochastic modelling

Fluid Solution (CFD)

Nominal Geometry – Steady State

Steady state CFD computations validated using experimental measurement data:

- Strut to Stator-4 geometry modelled ۲
- ~7.7 Mln cells (single passage) •
- turbulent flow with wall functions .
- turbulence model: Spallart-Almaras •
- boundary conditions extracted from experiments. •

Brandenburgische Technische Universität

ottbus - Senftenberg

Experimental Results Comparison

Chair of Structural Mechanics and Vehicle Vibrational Technology | Gambitta | Kühhorn

Europäischer Fonds für . Regionale Entwicklung

Brandenburgische Technische Universität Cottbus - Senftenberg

Efficient manufacturing variability stochastic modelling

FEM Vibrational Analysis

FEM Analysis

Brandenburgische Technische Universität Cottbus - Senftenberg

FEM analysis of blades vibrational modes:

- disk structure integrated;
- engine working conditions;
- vibrational modes of interest selected.

Mode	Natural Frequency
Mode 01	742.33 Hz
Mode 11	6894.6 Hz

Mesh Study - Modal Forcing Convergence

Dependence upon the mesh of the steady-state modal forcing acting on the rotor blade:

Brandenburgische Technische Universität

Cottbus - Senftenberg

- Selected mesh nodes number: ~8,730,000 points
- Relative numerical error:

Vibrational Mode	Numerical Error
Mode 01	< 0.03%
Mode 11	< 0.5%

Europäischer Fonds für . Regionale Entwicklung

Brandenburgische Technische Universität Cottbus - Senftenberg

Efficient manufacturing variability stochastic modelling

Mistuned Fluid Solution

Calculation of the forcing generated on the rotor-2 mode shapes from the unsteady flow pressure field:

- Pressure field from unsteady CFD solution projected onto the modes shape calculated to extract the forcing in the modal domain
- Vibrational modes of interest:
- Mode 01 (first flap mode)
- Mode 11 (torsional mode)

Single Passage Multi Row - SPMR

Modal Forcing Amplitude

Projection of unsteady pressure on blade surface over vibrational mode shapes:

- time periodic function;
- mode specific.

Brandenburgische Technische Universität

Forced Response Engine Orders

Amplitude of the harmonics corresponding to the main engine orders.

Engine Orders (EO): frequencies arising from the engine working condition as higher harmonics of the shaft speed.

Uncertainty Quantification Methodology

Chair of Structural Mechanics and Vehicle Vibrational Technology | Gambitta | Kühhorn

Brandenburgische Technische Universität

Cottbus - Senftenberg

Uncertainty Quantification (Mistuned R2)

Quantification of the variability of the modal forcing acting on the R2 vibrational mode-shapes:

- SPMR configuration;
- geometrical variability applied on R2 geometry;
- sampling technique: Latin Hypercube Sampling;
- variables probabilistic distribution replicated from measurement data cumulative distribution function;
- no correlations present;
- 180 total samples created.

VSV1

R2

Brandenburgische Technische Universität

VSV2

ottbus - Senftenberg

UQ Results (Mistuned R2)

Brandenburgische Technische Universität Cottbus - Senftenberg

Mistuned modal forcing scatter for the main engine orders:

Chair of Structural Mechanics and Vehicle Vibrational Technology | Gambitta | Kühhorn

Mistuned R2 – FA Analysis

Full annulus analysis (VSV1-R2) for the estimation of the mistuning effect in the assembly:

Europäischer Fonds für Regionale Entwicklung

Brandenburgische Technische Universität Cottbus - Senftenberg

Efficient manufacturing variability stochastic modelling

Overview

Overview

Brandenburgische Technische Universität Cottbus - Senftenberg

- Study of manufacturing geometrical variability on turbofan engine HPC:
 - \circ deviations of blades geometry from the nominal design modelled for the representation in the computational models;
 - principal component analysis of geometrical variables provides an optimal subset of geometrical modes;
 - $\ensuremath{\circ}$ stochastic representation of the variability.
- Aeroelastic analyses considering geometry based mistuning is carried on a test-rig case:
 o focus on geometrical variability effect on blades modal forcing;
 - o mode shapes extracted form blisk FEM and mapped over the CFD model nodes;
 - validated CFD model used for the computation of the unsteady pressure on the rotor blades surfaces;
 - o uncertainty quantification of the geometrical variability effect on the modal forcing:
 - reduced model employed for the CFD solution (SPMR, time-space periodicity solving the governing equations in the frequency domain);
 - unsteady modal forcing is studied as amplitude and phase shift for the different engine orders;
 - results are compared to a larger computational model to assess the influence of multiple variable blades in the assembly.

Contact Page

Marco Gambitta

Chair of Structural Mechanics and Vehicle Vibrational Technology Prof. Dr.-Ing. Arnold Kühhorn Brandenburg University of Technology

b-tu.de/fg-strukturmechanik

