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general problem:

robust approach: Monte Carlo Simulation
(based on LHC, oLHC, DS)

uncertain
input

uncertain 
output

nonlinear
mapping

2Motivation and Approach

N=1e3

engineers main interests related to           :

− expectation, e.g.

assumption:

− scatter, e.g.

− probability, e.g.

How to evaluate?
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3Motivation and Approach

Outline

Introduction to SPM

Performance assessment

How to use SPM for RDO?

Robust aerodynamic compressor blade design

General industrial applicability

Sigma-P oint M ethod!

Related to RDO: Is it possible to either reduce 
computational effort for given level of accuracy or to 
increase prediction quality with same effort?
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Introduction to SP Method

based on Gaussian Quadrature
“…With a fixed number of parameters [Sigma Points], it 
should be easier to approximate a Gaussian distribution 
than it is to approximate an arbitrary nonlinear function…”*

− use                 Sigma-Points:

− direct propagation:

− approximate expectation and covariance:

*[Julier and Uhlmann, 1996/2004]

4

N=1e3
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features

5Introduction to SP Method

− direct propagation of uncertainties through a nonlinear/
non-monotonic system

− deterministic, gradient free, simple implementation
− accounts for curvature

What about speed-up?

1 40 80

1e2

1e6

uncertain design space dimension n

speed-up of SPM compared 
to N MCS runs

N=1e3
N=1e4

N=1e5
N=1e6

What about prediction accuracy?
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procedure to compare SPM with MCS

6Performance assessment

− define test problem and input variability, e.g.

− generate full factorial design of
experiment with e.g.

− absolute compute errors:

− evaluate mean values and variances at
each experiment, i.e.:

estimates by SPM with 

estimates by MCS with

“exact” values by LHC with
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7Performance assessment – SPM vs. LHC
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8Performance assessment – SPM vs. LHC
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9Performance assessment – SPM vs. LHC
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10Performance assessment – SPM vs. oLHC
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11Performance assessment – SPM vs. oLHC
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12Performance assessment – SPM vs. LHC
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13Performance assessment – SPM vs. LHC
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14Performance assessment – SPM vs. oLHC
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15Performance assessment – SPM vs. oLHC

benefit, 
except fo

r some 

regions!
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16How to use SPM for RDO?

design problem based on Branin’s rcos test function

adjusted coefficient of determination

Is it possible to estimate
prediction quality of SPM 
estimates?

input uncertainty:

robust design problem:



Flassig, Swoboda, Backhaus, RRD DSE, 5. DPW 2012Rolls-Royce proprietary information

17How to use SPM for RDO?

influence of quality indicator constraint on feasible design space and results

− Assumption: if transfer function is mostly linear around
mean value, SPM will estimate exact results.

− Do linear regression and compute adjusted coefficient of determination. 
The higher COD the more accurate are SPM results.

− extended RDO:

Zoom
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18How to use SPM for RDO?
− results of two different

AMGA optimisation runs

− validation of non-dominated 
designs using LHC with  

− comparison by computation linear 
correlation coefficients between 
SPM and LHC values

eRDO enables excellent results w.r.t. order of desig ns in criterion space!
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19Robust aerodynamic compressor blade design

aerodynamic 2D robust design problem:

section 2D-CFDdesign
vector

random
perturbation

nominal design improvement

mean loss
robust

reliable
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20Robust aerodynamic compressor blade design

quantification of manufacturing uncertainties

data reduction & identification

− surface measurements of 147
manufactured blades by TU Dresden

− surface parametric model according to Lange u.a. (2009)

statistical evaluation

design vector                differs from the uncertain vector

test of SP method by performing DoE in p
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21Robust aerodynamic compressor blade design

DoE results: SPM vs. LHC of equal size, N=21

compute error values based on LHC with N=200

0.1453 0.4583 0.7714 1.0844 1.3975 -1.1967 -0.9243 -0.6519 -0.3795 -0.1071

0.9169 0.935 0.9532 0.9713 0.9895

LHC

SPM

LHC

SPM

loss

exit flow angle
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22General industrial applicability

Does prediction capability of a RSM increases due to deterministic 
property of SPM? –Cross Validation loss RBF Models

Is it possible to also model arbitrary variability?

− SPM & mixture of Gaussians in conjunction with 
cluster and expectation maximisation algorithm

prediction accuracy increases due to more points

− transformation into Gaussian space
by e.g. Cholesky Decomposition or
Rosenblatt transformation

Yes it does!

Yes it is!
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23Conclusions

compared to MCS the SPM provides same accuracy with less
effort or better accuracy with some effort

adjusted coefficient of determination can be used as quality indicator

application of extended RDO to analytical test function using SPM provides 
excellent results from industrial point of view

Outlook
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24Comparison SP vs. optimal-LHC



Flassig, Swoboda, Backhaus, RRD DSE, 5. DPW 2012Rolls-Royce proprietary information

25

Back


