Fluid-Structure Simulation of an Axial Turbine using ANSYS Workbench and Robust Design Optimization with Manufacturing Tolerances using optiSLang

NSYS°

Johannes Einzinger ANSYS Continental Europe johannes.einzinger@ansys.com

8

Dirk Roos & Veit Bayer DYNARDO GmbH dirk.roos@dynardo.de

Outline

- Process integration
 - Parameterization of the Process and Geometry

Sensitivity Analysis

- Multivariate statistic
- Meta-modeling

Design Optimization

- Evolutionary Algorithm
- Adaptive Response Surface Method

Robustness Evaluation

- Random Variables
- Random Fields

Design for Six Sigma

- Reliability Analysis
- Robust Design Optimization

Workbench Platform & optiSLang (NSYS)

5

Parameterization Process & Geometry Sensitivity Analysis Design Optimization

Robustness Evaluation

Design for Six Sigma

NNSYS[®]

Parameterization of the Workflow **ANSYS**

Parameterization of the Geometry **ANSYS**

Parameter Manager

Axia File	ITurbineFSIblend_optiSLan Edit View Tools Units I	g - Workbench Help															ð 🗙
C opt	iPlug 门 New 💕 Open	🛃 Save 🔣 Save As 🖓 Reco	nnect 🛛 🥭 Refresh	Project 🍼 Update	Project]] Import 🔇 R	eturn to Project 🏼 🎧	Compact Mode									
Outline c	of All Parameters			_ ×	Table o	f Design Points			-								_ ×
-	A	В	C	D	-	A	В	С		D			E		F	G	
1	ID	Parameter Name	Value	Unit	1	Name 🔻 P5 -	nyomega 🔻 P15	5 - DS_hub_angle	▼ P1	6 - DS_shrou	d_angle 🔻	P17	- DS_gv_ang	gle 💌	P20 - Ttin 💌	P21 - ptin	• P22
2	Input Parameters				2	rad	an s^-1 🔻								к	Pa	•
3	ф Р5	myomega	-2094.4	radian s^-1 👻	3	Current -2094	.4 0		0			0			1000	3E+05	870
4	φ P15	DS_hub_angle	0		*										2.9190.9100.		
5	🗘 P16	DS_shroud_angle	0					• •	r			I					
6	φ P17	DS_gv_angle	0		1			ist (٦t	1)6	126		n F	יר	nin	21	
	ф Р20	Ttin	1000	к 🔻	•							9		C			
	🛱 P21	ptin	3E+05	Pa 🔻	-							_					
	ф Р22	pout	87000	Pa 🔻	•												
	ф Р23	myAirCP	1004.4] kg^-1 K^-1 ▼	•				•			• •		-			
n	ф Р24	myAirR	287.1] kg^-1 K^-1 ▼	Proper	ties of Outline A18:	P35						* -Þ X				
	ι <mark>φ</mark> Ρ25	mySteelCP	434] kg^-1 K^-1 ▼	-	A				в				1			
	🛱 P26	mySteelDensity	7850	kg m^-3 🛛 🔻		Property			04	/alue							
	ф Р27	mySteelLambda	60.5	W m^-1 K^-1 ▼	2	E General											
	🗘 P28	DS_FBlendRotor	1		3	Description	1										
D	ф РЗО	Young's Modulus	2E+11	Pa 🔻	4	Error Mess	age										
	🛱 P31	Poisson's Ratio	0.3		5	Expression	P5							1			
D	on New input parameter	New name	New expression		6	Usage	Derived										
_	Output Parameters				7	Quantity N	iame Angular Velo	ocity						1			
	P7	Ttratio	1.1158				-							-			
₹	P8	myTorque	-576.75	J													
U	P9 📢	myeta	0.71645					lir	∩k	'DN		าว	rai	m	D t C	r	
	P10	ptratio	1.6738					II				a	1 ai			//,	
σ	P11	myPower	1.2079E+06	W				-							_		
	P12	Temperature Maximum	688.26	С				hv		vn	ro	C	nia	n	c f	n	
L	P13	Total Deformation Maximum	0.00063589	m				IJУ		γh		2	SIU		з, і		
	P14	Equivalent Stress Maximum	2.2466E+09	Pa													
	P29	Density	7850	kg m^-3			n	arar	\mathbf{n}	ata	r r	0	ctr	in	tin	ne	
	P32	Thermal Conductivity	60.5	W m^-1 C^-1			– Po	alal	110	テレビ		C	วแ	IC I		13	U
30	P33	myMassFlow	11.566	kg s^-1			•										
31	₽34	Equivalent Stress Blend Maximum	2.2466E+09	Pa					fı	irth		r /	211	tn	111		
32	🗖 P35	Rotational Velocity Z Component	-2094.4	radian s^-1					IU	11 11	IEI		JU	ιµ	uι		
*	闷 New output parameter		New expression											•			
p	ut Para	ameter	:	= 15	-)	1111)	_	_	_							> _ ×
u	tput Pa	ramete	er :	= 9		B Details									C Progress		
	•													- Hida Dr		bow 18 Marca	

Workbench Interface to optiSLang **ANSYS**

	AxialStageFSIblend - Workbench		
	File Edit View Tools Units Help		
	👔 New 🚰 Open 📕 Save 🔣 Save As 🏟 Reconnect 😹 Refresh Project 🍠 Update Project 👔 Import 🌀 Proj	ject 🕢 Compact Mode 🛛 📿 optiPlug	
	Toolbax _ X Project Schematic		_ ×
	Analysis Systems		
	Bectric (ANSYS) ▼	🗸 🗸 🖌 🗜 : 📢 opurioy	
	S Fluid Flow (CFX) 1 🕅 Geometry 1 🛠 TurboGrid	1 🗊 CFX 1 🚺 Steady-State	
	2 🕼 Geometry 🗸 📥 2 🚱 Turbo Mesh 🗸	🔽 🖗 Setup 🖌 🖌 2 🖉 Engineering D	
	Harmonic Response (ANSYS) A 3 Parameters TurboGrid TurboGrid	3 🕼 Solution 🗸 🚽 🖓 Geometry	
	Linear Buckling (Samcef) (Beta) Geometry	4 W Model	
	W Agnetostatic (ANSYS)	Setup	
0	entiDlug WB 12	7 Presults	
\$ 0		> 8 🖗 Parameters > 8 🛑 Parameters	
		Steady-State Thermal (ANSYS) Static Structural (ANSY	YS)
	Write optimization project		
	Uptimization problem		
	Lower bounds (-) 10 % Linner bounds (-) 20 %		
	Lower bounds (-) To % Opper bounds (+) 20 %		
	Update mode		
	Don't write files, show a warning message		
	Don't write riles, show a warning message		
	Save results		
		VI	V
	Show WB GUI during calculations		
			_ ×
		В	с
		Details Pro	ogress
_			
	View All / Customize		
	Ready	I Hide Progress	👍 Show 31 Messages

Workbench Interface to optiSLang **ANSYS**

	optiSLang 3.0.1 powered by flowGuide			
	flowGuide Edit Tools View Options Help Start		se flowGuide Project Manager	
	Project manager Exit Ctri-E	Result_monitoring	File	sc.
	 Parametrize_problem Gradient_based 	Workflow name: Result_monitoring_parsing_120005		Project Manager
	ବ୍ଦ୍ର 🖸 Genetic_algorithm_GA ବ୍ୟୁ 🤠 Evolutionary_algorithm_EA ବ୍ୟୁ 🔂 Pareto_optimization	Description: Open and show a result file (resp. Save_xyz.bin)	Pri	Import Project
	Comparison of experiments_DoE Meta_modeling_META Adaptive_response_surface_ARSM	Workflow Parameters	Select a task Projec	t directory:
	Robustness_analysis Reliability_analysis Reliability_analysis Robust_design_optimization_RDO	Mode	O Sub	project of:
	• Revaluate_results		O New project	Projects Ayiatte anneFSiblend
			Import project Customize project	
C Select				
Look <u>i</u> n:	🗖 optiSLang			
ARSM_ARSI	M 🗖 bin			
Siblend_o	ptiSLang_dsa_DOE 🔄 opti_probl	ems		Apply Back Cancel Close
Siblend_o	ptiSLang_rob_ROBUST 🔲 workflows	s iSLangVAx	alTurbineARSM_ARSMISave_AxialTurbineAR_ARSM.bin	
Siblend_o Siblend_o	ptiSLang_robust_ROBUST 🗋 AxialTurbin ptiSLang_SA2_DOE	neFSIte		
•				
File <u>N</u> ame:	AxialTurbineFSlblend.fgpr	ì	Start Save Reset Stop	
Files of Typ	pe: flowguide project files	Ting_para	n_090807_172625 : AxialTurbineFSIblend	
		Select Cancel		
	Result:			
-	optiSLang 3.0.1 powered by <i>flowGuide</i> Started workflow: Re	sult_monitoring_instance		

Parameter Attributes

Input Parameter	Parameter Name	Initial Value	Туре
Blade Angels	$\alpha_{GV}, \alpha_{Hub}, \alpha_{Shroud}$	0°, 0°, 0°	deterministic
Rotational Velocity of Rotor	Ω	-2094 [rad/s]	deterministic
Rotor Blend Radius	r _{Blend}	1 [mm]	deterministic
Total Temperature Inlet	T _{t,Inlet}	1000 [K]	deterministic
Total Pressure Inlet	p _{t,Inlet}	400 [kPa]	deterministic
Pressure Outlet	P _{out}	187 [kPa]	stochastic
All Material Properties	-	-	stochastic
Output Parameter	Parameter Name	Initial Value	Target
Total Temperature Ratio	$\Theta_{T} = T_{t,Inlet} / T_{t,Outlet}$	1.115	-
Total Pressure Ratio	Π _p =p _{t,Inlet} /p _{t,Outlet}	1.673	-
Torque/Power at Rotor	M _P , P	-577 [Nm], 1.21 [MW]	maximize
Mass Flow Rate	m	11.56 [kg/s]	-
Isentropic Efficiency	η	71.64 [%]	maximize
Maximal v. Mises Stress	σ_{max}	218.6 [MPa]	below limit

© 2009 ANSYS, Inc. All rights reserved.

Parameter Physics, Fluid Flow

 $P, M_P \sim \dot{m} \cdot \Delta(u \cdot c_u)$

Parameter Physics, Mechanic

ANSYS[®]

Parameterization Process & Geometry Sensitivity Analysis Design Optimization Robustness Evaluation

NNSYS®

Design for Six Sigma

Latin Hypercube and Confidences **ANSYS**

2

4

6

8

From: Advanced Latin HyperCube Samples 36/36 (4 failed)

10

12

14

- n = 7 design variables
- N = 40 design evaluations (4 failed)

Confidence levels are quite acceptable

© 2009 ANSYS, Inc. All rights reserved.

16

Confidences, Anthill Plots

Coefficient of Importance, Col

Coefficient of Importance Quadratic Regression

- Filtered parameters vs. all parameters
- Linear vs. nonlinear monotonic and quadratic regression
- Adjusted vs. non-adjusted coefficient of determination

72% variance of the stress variation can be explained by the given n = 7 design variables

Coefficient of Importance Quadratic Regression

- Most important parameter of the equivalent stress is guide vane angle according the Coefficient of Importance
- Anthill plot shows slow correlation
- Verification using CoP/MoP

Metamodel of Prognosis, MoP

Metamodel of Prognosis, MoP

© 2009 ANSYS, Inc. All rights reserved.

Coefficient of Importance, Col vs. **ANSYS** Coefficient of Prognosis, CoP

© 2009 ANSYS, Inc. All rights reserved.

25

ANSYS, Inc. Proprietary

Anthill Plots Objective

Target Function for Optimization:

$$f_{\text{Target}} = (1 - \eta) + \frac{1}{4} \cdot \left(1 - \frac{P}{2[MW]}\right)^{!} = \min$$

Weighted objective mainly depends on efficiency

Anthill Plots Objective

Conclusion Sensitivity Analysis

ANSYS[®]

Parameterization Process & Geometry

Design of

Experiments

ANSYS°

Design Optimization Obustness Evaluation Design for Six Sigma

Nonlinear Optimization, Algorithm **ANSYS**

© 2009 ANSYS, Inc. All rights reserved.

Optimization Strategy

- **Sensitivity Analysis**
- Shows Potential
- Non convex target
- No parameter reduction

Strategy:

- Global search, EA
- Start population from DoE
- Local improvement, ARSM

Outlook Strategy

- **Sensitivity Analysis**
- Shows Potential
- Convex target
- Parameter reduction

Strategy:

- Global search, sub space, ARSM
- Local improvement, full space, EA
- Start population from ARSM

Evolutionary Algorithms (EA)

Optimization in Nature:

- Survival of the fittest
- Evolution due to mutation, recombination and selection

ANSYS[®]

Evolutionary Algorithms (EA)

History of the Evolutionary Algorithm

Evolutionary Algorithms (EA)

 Due the non-convex behavior of the efficiency and nonlinear power function a global search strategy using genetic algorithm is recommended

ANSYS[®]

Adaptive Response Surface Methods (Local)

 $\|$

Adaptive Response Surface (ARSM)

ANSYS[®]

Adaptive Response Surface (ARSM)

- The ARSM does not provide differentiable and smooth problems; very efficient for n < 15 design parameters
- Starting solution is based on the best design of the EA

The design space is reduced to 20% around start solution

© 2009 ANSYS, Inc. All rights reserved.

Input	Initial Design	Optimized			ANSYS
α_{Hub}	0	-0.34	ANDIS		
α_{Shroud}	0	-0.18			
Ω [rev/s]	-335	-365			
$\alpha_{Guide \ Vane}$	0	-9.68			
			Output	Initial Design	Optimized
			T _t Ratio	1.116	1.151
			p _t Ratio	1.674	1.848
			η [%]	71.65	81.54
			Power [MW]	1.208	1.329

© 2009 ANSYS, Inc. All rights reserved.

ANSYS[®]

ANSYS[®]

ANSYS

Temperature Contour 2

 N = 36 + 257 + 84 = 377 design evaluations (SA + EA + ARSM)

ANSYS

[C]

- How robust is the initial design?
- How robust is the optimized design?
- How reliable is the optimized design?
- How large is the influence of surface uncertainties?

Output	Initial	DoE	EA	ARSM
Objective	1.0766	0.90034	0.86841	0.86259
η [%]	71.65	80.60	81.26	81.54
Power [MW]	1.208	1.304	1.343	1.329

Parameterization Process & Geometry

Design of

Experiments

Design Optimization

NNSYS[®]

Robustness Evaluation Design for Six Sigma

Robustness Evaluation

Identification of non-robustness

- Variance of the responses increase
- Moving of the mean values
- Responses exceed the limit states
- Undesired outliers
- System failures (buckling, resonances, recirculation...)

Benefit of robustness evaluation

- Correlation between parameters and responses
- Find most-relevant random parameters to reduce the stochastic problem

Robustness Evaluation

• Limit state conditions

	Name	Function	active
_imitStress	11162160	©≦ 2.8e9-Equivalent_Stress_Maximum	
_imitEta		© ≝ myeta-0.795	Ľ
imitPower		©≝ myPower-1.0e6	V

Random parameters

\supset			AxialTurt	ine_04ROBUSTorg.pro	b)			Axia	ITurbine_04R0BUST.pr	b				0
Ор	ti Robust	Output	Strings	Constraints	Objective	s		Opt	i Robust	Output	Strings	Constraints	Obje	ctives			
#	Name	9	Distributio	n Mean	CoV	Std L		#	Name	Dis	tribution	Mean	CoV	Stddev	Lo l	J	
1	myome	ga	Normal	-2094.39	-0.02	41[30	1	mvomeda	ι ľ	Jormal	-2244.21541	-0.02	44.88	- 1		
2	DS_hub_a	ingle	Normal	0.0	Infinity	0.0[30	2	DS_hub_ang	gle 🛛 N	Iormal	-0.33698805	-0.02	0.006	-		
3	DS_shroud	_angle	Normal	0.0	Infinity	0.0[30	3 C	DS_shroud_a	ngle 🛛 🗎	Iormal	-0.17857451	-0.02	0.003	-		
4	DS_gv_ai	ngle 📋	Normal	0.0	Infinity	0.1	1	4	DS_gv_ang	le 🛛 🏌	Iormal	-9.68181702	-0.02	0.193	-		
5	<u> </u>		Normal	1000.0	0.02	20.0[1	5	Ttin	1	Iormal	1002.859199	0.02	20.05	-		
6	ptin		<u>Normal</u>	300000.0	0.03	900	1	6	ptin	1	lormal	305000.0	0.03	9150.0	-		
	pout		Normal	8/000.0	0.02	1/4	1	7	pout	1	lormal	87000.0	0.02	1740.0	-		🗹 🗆
8	myAir(<u>_P</u>	<u>Normal</u>	1004.4	0.03	30	1	8	<u> </u>	1	lormal	1004.4	0.03	30.13	-		
9	<u> </u>	<u>R</u>	Normal	287.102	0.03	8.6	1	9	<u> </u>	1	Iormal	287.102	0.03	8.613	-		
10	<u> </u>	ICP	Normal	434.0	0.05	21	1	10	<u>mySteelCl</u>	PI	lormal	434.0	0.05	21.70	-		
11	<u> </u>	ensity	Normal	7850.0	0.01	78.5	1	11	<u>mySteelDen</u>	sity 👔	lormal	7850.0	0.01	78.5	-		
12	<u> </u>	mbda	Normal	60.5	0.04	2.42	1	12	mySteelLami	oda 👔	lormal	60.5	0.04	2.42	-		
13	DS_FBlend	<u>Rotor</u>	Normal	1.0	0.02	0.02	1	13	<u>DS_FBlendRo</u>	otor l	lormal	0.9	0.02	0.018	-		🗹 🗆 🛛
14	<u>Youngs_Mo</u>	<u>dulus</u>	Normal	2.0E11	0.03	6.0E9	1	14 Y	<u>(oungs_Mod</u>	<u>ulus l</u>	lormal	2.0E11	0.03	6.0E9	-		🗹 🗆 🛛
15	Poissons_	Ratio	Normal	0.3	0.1	0.03	1.	15	<u>Poissons_Ra</u>	tio ľ	lormal	0.3	0.1	0.03	-		
						Cancel	ĸ							(Cancel		ОК

Latin Hypercube

- n = 15 random parameters
- N = 50 design evaluations
- Initial vs. optimized design

Correlation, Col, Histogram, Anthill Plot

Histograms

Non-robust initial design

Robust design up to a sigma level of 4.5

© 2009 ANSYS, Inc. All rights reserved.

Conclusion Robustness

Parameterization Process & Geometry Sensitivity Analysis Design Optimization

Random Fields

Design for Six Sigma

NNSYS[®]

What is a Random Field?

- Random variation of a property (geometry, material, load, ...) over space.
- Spatial domain defined by the observed structure.
- A property takes random values at each point on the structure.
 Values at different locations may be correlated.

(Example: random realizations of a cylinder)

Data sources for random field modelling:

- Measurements at discrete points (e.g. geometry scan),
- Simulation (e.g. of a manufacturing process with random parameters)

Random field discretization:

- Nodes (e.g. imperfect coordinates,...)
- Elements (e.g. material, initial strains,...)
- By discretization, the random field is defined by:
- Mean values vector and
- Standard deviations vector and correlation matrix, or
- Covariance matrix

Random Fields: Background

Random field simulation:

 After decomposition of the covariance matrix, the random field is expanded as a series of random amplitudes and deterministic shape functions.

- The series may be truncated to reduce the number of variables,
- Quality of truncated series is measured by the variability fraction
- Post-Processing of shape functions corresponding to most relevant random variables (in Robustness Analysis) gives insight to manufacturing tolerances.

Measure Spatial Deviations

Example:

- Using 3D digitizer

 Based on the principle of triangulation, projected fringe patterns are observed with cameras, 3D coordinates for each camera pixel are calculated, a polygon mesh of the object's surface is generated
 Deviations from CAD geometry can be calculated

Scope of analysis:

- Given is the FE model of a turbine blade
- Imperfect geometry is scanned at 1500 points on the surface
- A Random Field is modelled by the statistics of measurements
- Random realizations of the turbine blade are generated by optiSLang and put into CFD analysis with ANSYS workbench

(Measurement points on blade surface)

0.01000

0.00995

0.00990

0.00985 0.00980 0.00975 0.00970

Measurements:

- Geometry can be scanned on the surface of the blade
- Here, measures in y- and z-direction are taken (x: longitudinal direction)
- Mean values of imperfections are assumed zero

(Standard deviations of measured imperfections)

- Number of imperfection modes depends on number of DOF
- Can be reduced using the 1500 measurement points and interpolation of the finite element mesh
- Further reduction of the imperfection shape number using an acceptable variability of modal basis:
 - Normed variability of total random field data = 9.7748e-05
 - Normed variability of modal basis (n=18) = 9.7748e-05
 - Normed variability of mode shape #1 = 9.7672e-05
- Question: which parameters have a significant influence of the performance relevant output parameters?

61

Shape 1 of Y

-0.0254

-0.0256 -0.0258 -0.0258 -0.0258 -0.0258 -0.0260 -0.0260 -0.0260 -0.0260 -0.0260 -0.0260 -0.0260 -0.0260 -0.0260 -0.0260 -0.0260 -0.0262 -0.

> Object: AMPLITUDES_Z Object info: 2 2 9 1 0

0.28708343060908 0.0054186311280151 0.0036936006781938 0.002228785060336 0.0019874267604701 0.0015294461571268 0.0014213940470741 0.0010411406423311 0.00092089226898308

* Avi	alTurbine_0		T nro								
AAI		/UNODOS	1.610							•	Including all random variables (n=14) and relevant
									ل		imperfection modes (n=18)
Opti	Robust	Output	String	s Constraints	Objec	ctives			· · · · · · · · · · · · · · · · · · ·	•	Possibility of failed designs
#	Name	Dist	tribution	Mean	CoV	Stddev	Lower Cut	Upper Cut	Format AcCo		
1	AMP_Y_1	N	lormal	0.0	Infinity	0.38276414	-	-	%20.14g 🗹 🛄	•	Advanced optimized latin hypercube sampling
2	AMP_Y_2	N	lormal	0.0	Infinity	0.00749656	-	-	%20.14g 🗹 🗌		
3	AMP_Y_3	N	lormal	0.0	Infinity	0.00519877	-	-	%20.14g 🗹 🗌	•	N = 47
4	AMP_Y_4	N	iormai	0.0	Intinity	0.00332363	-	-	%20.14g 🕑 🗌		
5	AMP_Y_5	N	lormal	0.0	Infinity	0.00276139	-	-	%20.14g 🗹 🗌		Norm of Realization
	AMP_Y_6	N	iormai	0.0	inninity India india	0.00199919	-	-	7620.14g V		
	AMP_Y_/	N N	iormai	0.0	inninity	0.00187636	-	-	7620.14g		
8	AMP_Y_8	N 1	iormal	0.0	Infinity	0.00164755	-	-	%20.14g ⊻		
9	AMP_Y_9	N N	iormai	0.0	inninity	0.00133683	-	-	7620.14g 🕑 🗌		
10	AMP_Z_1	N	lormal	0.0	Infinity	0.28708343	-	-	%20.14g		
11	AMP_Z_2	N	lormal	0.0	Infinity	0.00541863	-	-	%20.14g		
12	AMP_Z_3	N	lormal	0.0	Infinity	0.00369360	-	-	%20.14g		
13	AMP_Z_4	N	lormal	0.0	Infinity	0.00222878	-	-	%20.14g		
14	AMP_Z_5	N	lormal	0.0	Infinity	0.00198742	-	-	%20.14g		
5	AMP_Z_6	N	lormal	0.0	Infinity	0.00152944	-	-	%20.14g		
5	AMP_Z_/	N	lormal	0.0	Infinity	0.00142139	-	-	%20.14g		
/	AMP_Z_8	N	lormal	0.0	Infinity	0.00104114	-	-	%20.14g		
18	AMP_Z_9	N	lormal	0.0	Infinity	9.20892268	-	-	%20.14g		
19	myomega	N N	lormal	-2244.21541	-0.02	44.8843082	-	-	%20.14f		
20	DS_hub_ang		lormal	-0.33698805	-0.02	0.00673976	-	-	%20.14f		
21	DS_shroud_ar	ngle IN	lormal	-0.17857451	-0.02	0.00357149	-	-	%20.14f		
22	US_gv_angl		lormal	-9.00101702	-0.02	0.19363634	-	-	762U.14T ♥		
23	Itin	N N	iormai	002.85919	0.02	20.057184	-	-	762U.14T		
24	ptin	N N	iormai	305000.0	0.03	9150.0	-	-	%20.141 V		
25	pout	N	lormal	87000.0	0.02	1740.0	-	-	%20.14f		
26	myAirCP	N	lormal	1004.4	0.03	30.1319999	-	-	%20.14f		
27	myAirR	N N	lormal	287.102	0.03	8.61305999	-	-	%20.14f		
28	mySteelCP	- N 2 N	lormal	434.0	0.05	21.7000000	-	-	%20.14f		
29	mySteelDensi	nty IN	lormal	7850.0	0.01	78.5	-	-	%20.14f		
30	mySteeiLamb	da N	iormai	60.5	0.04	2.42	-	-	7620.14T		
31	US_FBiendRo	tor N	iormai	0.9	0.02	0.01800000	-	-	7620.14T		
32 32	roungs_Modu	ius N	iormai	2.0E11	0.03	6.0E9	-	-	7620.14T		
33	Poissons_Ra	tio N	iormai	0.3	0.1	0.03	-	-	762U.14T		

© 2009 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Example: Axial Turbine Blade

Robsutness Analysis:

- Including all random variables (n=14) and relevant imperfection modes (n=18)
- Smaller values for "myeta"
- Nearly the same variance of the responses

Only random geometry parameters

Including the manufactoring tolerances

1

Min: 1.168e+06

Mean: 1.326e+06

CV: 0.04776

Mean: 1.326e+06

fitted PDF

Limit line

dillh histogram

Min: 1.183e+006

Mean: 1.323e+006

CV: 0.04722

Mean: 1.323e+006

x rel = 1.43062e+006

Skewness: -0.03409

P nel = 0

Skewness: -0.3664

P rel = 0

1

OUTPUT: myeta o. 200 0.6 150 fitted PDF PDF [1e-5] 0.4 մՈհ histogram P D Limit line 0.2 50 0 0.795 0.8 0.805 0.81 0.815 OUTPUT: myeta Statistic data Min: 0.8049 Max: 0.8168 Mean: 0.8116 Sigma: 0.002419 CV: 0.00298 Skewness: -0.4368 Kurtosis: 3.28 Fitted PDF: Logistic Mean: 0.8116 Sigma: 0.002419 Limit x = 0.795 P fit = 3.87374e-06 P rel = 0 OUTPUT: myeta 300 o. 250 fitted PDF 0.6 histogram 200 PDF [1e-5] 0.4 Limit line 22 8 20 0 0.795 0.805 OUTPUT: mveta 0.8 0.81 Statistic data Min: 0.8041 Max: 0.8124 Mean: 0.8083 Sigma: 0.002028 CV: 0.00250 Skewness: -0.1842 Kurtosis: 2.345 Fitted PDF: Normal Mean: 0.8083 Sigma: 0.002028 Limit x = 0.795 P rel = 0 P fit = 3.07755e-011 Probability P(X<x) = 0.95

 Histograms resulting the random CAD parameters

ANSYS[®]

 Robust design up to a sigma level of 4.5

including the manufactoring tolerances

x_fit = 0.811601

x_rel = 0.811073

Meta-model of optimal and coefficient of prognosis :

0.08

0.06

0.04

0.00

-0.02 -0.04

-0.06

For maximum of stresses

For efficiency

Parameterization Process & Geometry Sensitivity Analysis Design Optimization

Robustness Evaluation

Design for Six Sigma

NNSYS[®]

Advanced reliability analysis

Adaptive Response Surfaces

Reliability set	tings 🔴
Load/Save Presets	
reliability algorithm Adaptiv	e response surface 🛛 🔻
rarameters	
Assumed failure probability	3.4e-6
Sampling method	directional sampling 🔻
Number of direction	adaptive sampling ons directional sampling
Initial DoEschema	D-optimal quadratic 🔻
Initial axial multiplier	1.0
Following DoE schemes	D-optimal linear 🔻
Rotate DoEschemes	
Maximum number of clusters	3
Max. number of adaptions	6
Accuracy of failure probability [%]	50.0
Limit bound of parameter changes [%]	2.0
Reset	Cancel OK

 Sampling methods on the MLS approximation:

ANSYS®

- Adaptive Sampling
- Directional Sampling (supports more than two failure domains and sigma level independent)
- Cluster analysis to detect number of failure domains with high failure probability
- Rotatable adaptive designs of experiments to improve the approximation accuracy

Adaptive design of experiments

Adaptive response surface method with D-optimal DOE

- Cluster analysis to detect number of failure domains with high failure probability
- Rotatable adaptive designs of experiments to improve the approximation accuracy

Directional sampling on MLS

- Sampling methods on the MLS approximation:
 - Directional Sampling (supports more than two failure domains and sigma level independent)

oti	Robust Out	put Limits	Strings	Constraints	Objectives					
¥	Name	Distribution	Mean	CoV	Stddev	Lower Cut	Upper Cut	Format	Acti	. Con
	myomega	Normal	-2244.215413.	0.02	44.88430827		-	%20.14f		
2	DS_hub_angle	Normal	-0.336988054.	0.02	0.006739761		-	%20.14f		
3	DS_shroud_angle	Normal	-0.178574512.	0.02	0.003571490			%20.14f		
4	DS_gv_angle	Normal	-9.681817021.	0.02	0.193636340		-	%20.14f	V	
5	Ttin	Normal	1002.859199	. 0.02	20.057184			%20.14f	V	
6	ptin	Normal	305000.0	0.03	9150.0	-	-	%20.14f	V	
7	pout	Normal	87000.0	0.02	1740.0		-	%20.14f		~
8	myAirCP	Normal	1004.4	0.03	30.13199999		-	%20.14f		
9	myAirR	Normal	287.102	0.03	8.613059999		-	%20.14f	V	
10	mySteelCP	Normal	434.0	0.05	21.70000000		-	%20.14f		~
11	mySteelDensity	Normal	7850.0	0.01	78.5			%20.14f	V	
12	mySteelLambda	Normal	60.5	0.04	2.42	-	-	%20.14f		
13	DS_FBlendRotor	Normal	0.9	0.02	0.018000000		-	%20.14f		
14	Youngs_Modulus	Normal	2.0E11	0.03	6.0E9	-	-	%20.14f	V	
15	Poissons_Ratio	Normal	0.3	0.1	0.03	-	-	%20.14f	V	
16	AMP_Y_1	Normal	0.0	Infinity	0.382764141		-	%20.14g		
17	AMP_Y_2	Normal	0.0	Infinity	0.007496567	-	-	%20.14g		
18	AMP_Y_3	Normal	0.0	Infinity	0.005198775	-	-	%20.14g		
9	AMP_Y_4	Normal	0.0	Infinity	0.003323636		-	%20.14g	V	
20	AMP_Y_5	Normal	0.0	Infinity	0.002761396	-		%20.14g		
21	AMP_Y_6	Normal	0.0	Infinity	0.001999197		-	%20.14g		
22	AMP_Y_7	Normal	0.0	Infinity	0.001876365		-	%20.14g		
23	AMP_Y_8	Normal	0.0	Infinity	0.001647552		-	%20.14g	V	
24	AMP_Y_9	Normal	0.0	Infinity	0.001336831		-	%20.14g		~
25	AMP_Z_1	Normal	0.0	Infinity	0.287083430		-	%20.14g		
26	AMP_Z_2	Normal	0.0	Infinity	0.005418631			%20.14g		
27	AMP_Z_3	Normal	0.0	Infinity	0.003693600		-	%20.14g		~
28	AMP_Z_4	Normal	0.0	Infinity	0.002228785		-	%20.14g		~
29	AMP_Z_5	Normal	0.0	Infinity	0.001987426	-	-	%20.14g		
30	AMP_Z_6	Normal	0.0	Infinity	0.001529446	-	-	%20.14g		
31	AMP_Z_7	Normal	0.0	Infinity	0.001421394	-	-	%20.14g		
32	AMP_Z_8	Normal	0.0	Infinity	0.001041140	-	-	%20.14g		
33	AMP Z 9	Normal	0.0	Infinity	9.208922689	-	-	%20.14a		V

Reliability settings			×
Load/Save Presets			
reliability algorithm	Adaptive res	sponse surface 🛛 🔻	
Parameters			
Assumed failure p	robability	3.4e-6	
Samplin	g method	directional sampling 🔻	
Number	of directions	10000	
Initial Do	E schema	D-optimal quadratic 🔻	
Initial axial	multiplier	1.0	
Following DoE	schemes	D-optimal linear 🔹 🔻	
Rotate DoE	schemes		
Maximum number o	f clusters	6	
Max. number of a	adaptions	6	
Accuracy of failure prob	ability [%]	10	
Limit bound of parameter cha	anges [%]	2.0	
Reset		Cancel OK	

 n = 9 relevant random parameters

Reliability Analysis

Method : Directional Sampling on Adaptive Response Surfaces (ARSM-DS)

Selected data : 2. Approximation

Number of designs : 141 (7 failed)

Complete directions : 10000 / 10000

Number of samples : Total : 19590 Safe domain : 15143 Unsafe domain : 4447 Failure strings : 0 Unsuccessful : 0

Probability of failure : 2.45e-07 (2.45e-07) Standard deviation error : 4.771e-08 (4.771e-08)

Most probable failure point:

myomega :-2217.04008841 DS_gv_angle :-9.99561718295 Ttin :960.730885684 ptin :266629.901461 pout :90929.4317189 myAirCP :1023.31803947 myAirC :279.505216069 Youngs_Modulus :202109405683 Poissons_Ratio :0.285449914136

Distance median - design point (beta) : 5.623

Probability of failure (FORM): 9.372e-09

- n = 9 random parameters
- N = 141 design evaluations
- Pf = 2.4e-7 < 3.4e-6 (4.5 sigma)
- Six Sigma Design

Successive Robust Design Optimization **ANSYS**®

- iterative decoupled loop approach
- in combination with identification of the most significant random and design variables using the multivariate statistic
- first step the robustness evaluation can be used to prove the predictive capability of the simulation model and to
- identify the most important parameters to solve reliability analysis, efficiently
- it is neccessary to evaluate robustness and safety of the design

Summary

- Workbench supports full Workflow
 - Geometry, Meshing, Simulation, Post-Processing
- Multi Physics support
- Parametric Workflow management
- Automatic and embedded solution procedure
- Parallel and distributed solver runs
- Process integration within optiSLang
- Robust Design Optimization with respect to 7 design parameters and 15 random geometry parameters, including the manufactoring tolerances based on measurements
- Optimized robust design
- Optimized Six Sigma design
- N = 36 + 257 + 84 + 47 + 141 = 565 design evaluations (SA)(EA)(ARSM)(RE)(RA)
- Calculation time: 48 hours (8 CPUs)