

Probabilistic Analysis of Regeneration-Induced Geometry Variances in a Low-Pressure Turbine

8. Dresdner-Probabilistik-Workshop TU Dresden, 8 – 9 October 2015

Benedikt Ernst Florian Herbst Jörg Seume

CRC 871

Motivation

- **Geometry Variances**
- **Probabilistic Model**

Results

Conclusions

8. Dresdner Probabilistik Workshop

Benedikt Ernst Slide 2/20 9 October 2015

Outline

Collaborative Research Center (CRC) 871

> Motivation and Objective

> Analysis of Regeneration-Induced Geometry Variances

> Probabilistic Model

Results

Conclusions and Outlook

CRC 871

Motivation

- **Geometry Variances**
- **Probabilistic Model**

Results

Conclusions

8. Dresdner Probabilistik Workshop

Benedikt Ernst Slide 3/20 9 October 2015

© Leibniz Universität Hannover 2015

CRC 871 - Regeneration of Complex Capital Goods

Scientific basis for maintaining complex capital goods to...

- recondition and improve the functional properties
- refurbish high-value components
- > reduce scrap rates

source: MTU

source: ENERCON

source: Siemens

source: Deutsche Bahn

Project Areas and Subprojects

Probabilistic Analysis of Regeneration-Induced Geometry Variances in a LPT

CRC 871

Motivation

Geometry Variances

Probabilistic Model

Results

Conclusions

8. Dresdner Probabilistik Workshop

Benedikt Ernst Slide 4/20 9 October 2015

© Leibniz Universität Hannover 2015

Funded by the DFG (German Research Foundation) since 2010

> 2nd funding period (2014 till 2017)

CRC 871

Motivation

Geometry Variances

Probabilistic Model

Results

Conclusions

8. Dresdner Probabilistik Workshop

Benedikt Ernst Slide 5/20 9 October 2015

© Leibniz Universität Hannover 2015

Motivation and Objective of the Present Study

- > High aerodynamic, mechanical, and thermal loads cause substantial wear
- Regular overhaul and repair of turbine blades
 - → Higher variance after regeneration compared to new engines
 - → Modified aerodynamic and aeroelastic performance
- Efficiency changes in a low pressure turbine (LPT)
 - LPT: $\Delta \eta_{\text{LPT}} = 1\%$ \rightarrow Overall: $\Delta \eta_{\text{overall}} \approx 0.7\%$

Analysis of regeneration induced geometry variances on the aerodynamic performance of a LPT

CRC 871

Motivation

Geometry Variances

Probabilistic Model

Results

Conclusions

8. Dresdner Probabilistik Workshop

Benedikt Ernst Slide 6/20 9 October 2015

Test-Case: Final Stage of a LPT at Cruise

Low Re: Profile aerodynamics dominated by boundary layer transition
 Laminar separation bubble at aft-part of suction side

> High sensitivity to geometrical variances can be expected.

CRC 871

Motivation

Geometry Variances

Probabilistic Model

Results

Conclusions

8. Dresdner Probabilistik Workshop

Benedikt Ernst Slide 7/20 9 October 2015

© Leibniz Universität Hannover 2015

Determination of Regeneration-Induced Variances

Optical 3D measurements of regenerated turbine blades

Alignment of the measured blades with the reference CAD-model

Extraction of blade profiles over the entire span

Determination of characteristic profile parameters

- Axial chord length
- Stagger angle
- Maximum thickness
- Trailing edge radius

...

(based on Aschenbruck et al. 2013)

CRC 871 Motivation Geometry Variances Probabilistic Model Results Conclusions 8. Dresdner **Probabilistik** Workshop Benedikt Ernst Slide 8/20 9 October 2015

 Image: Image of the image

Measured Blade Geometries

- > Database with 20 regenerated blades
- Data include geometry variances caused by manufacturing, operation, and repair
- > 19 extracted profiles at different span locations of each blade

CRC 871

Motivation

Geometry Variances

Probabilistic Model

Results

Conclusions

8. Dresdner Probabilistik Workshop

Benedikt Ernst Slide 9/20 9 October 2015

l i l Leibniz u o 2 Universität to o 4 Hannover © Leibniz Universität Hannover 2015

Parameterization to Characterize the Profile Geometry

> 12 parameters are used to describe the profile geometry.

Camber line and thickness distribution are modeled by polynomials.

CRC 871

Motivation

```
Geometry Variances
```

Probabilistic Model

Results

Conclusions

8. Dresdner Probabilistik Workshop

Benedikt Ernst Slide 10/20 9 October 2015

Geometry Parameter Deviation

Nominal design geometry is used as reference (CAD-model).
Deviations are referred to the parameters of the reference geometry.
Delta-parameter / parameter deviation:

$$\Delta P_{\text{realization}} = P_{\text{realization}} - P_{\text{reference}}$$

Excluding leading edge position and angles, all parameter deviations are normalized with respect to their reference value.

Geometry Parameter Variances at Different Span Locations

Probabilistic Analysis of Regeneration-Induced Geometry Variances in a LPT

CRC 871

Motivation

Geometry Variances

Probabilistic Model

Results

Conclusions

8. Dresdner Probabilistik Workshop

Benedikt Ernst Slide 11/20 9 October 2015

© Leibniz Universität Hannover 2015

Large scatter range e.g. of leading edge radius and trailing edge angle

Maximum deviation of axial chord and stagger angle at 85% span due to blend repair

CRC 871

Motivation

Geometry Variances

Probabilistic Model

Results

Conclusions

8. Dresdner Probabilistik Workshop

Benedikt Ernst Slide 12/20 9 October 2015

Correlations of Profile Parameter Deviations

Spearman correlation coefficient max * t,max relative) deviation of ΤE 0.5 $\beta_{\rm TE}$ ax 0 с_{max} `c,max LE -0.5 LΕ LE XLE c,max $\begin{bmatrix} \max \\ ax \\ ax \\ \gamma \\ TE \end{bmatrix}$ max max (relative) deviation of ...

Significant correlation e.g. between...

- > stagger angle γ and axial leading edge position x_{LE} (positive)
- > stagger angle γ and axial chord length I_{ax} (negative)
- > axial chord length I_{ax} and axial leading edge position x_{LE} (negative)
- > max. camber c_{max} and circumferential leading edge position $r\theta_{LE}$ (positive)

Scheme of the Probabilistic Model

Tool Chain

Probabilistic Analysis of Regeneration-Induced Geometry Variances in a LPT

CRC 871

Motivation

Geometry Variances

Probabilistic Model

Results

Conclusions

8. Dresdner Probabilistik Workshop

Benedikt Ernst Slide 14/20 9 October 2015

© Leibniz Universität Hannover 2015

CRC 871

Motivation

Geometry Variances

Probabilistic Model

Results

Conclusions

8. Dresdner Probabilistik Workshop

Benedikt Ernst Slide 15/20 9 October 2015

© Leibniz Universität Hannover 2015

CFD Setup of the Final Stage

Computational domain

- Quasi3D(Q3D)-grid at half-span
- Radial extent: approx. 0.03 l_{ax}
- Each sidewall at constant radius
- Radial resolution: 4 cells
- > Stator: approx. 78.000 cells
- > Rotor: approx. 89.000 cells

> *y*⁺ < 1

Finite volume code TRACE of the DLR

- 2nd order accuracy
- > RANS turbulence closure: Wilcox' (1988) k-@ turbulence model
- Including modification for stagnation point (acc. to Kato and Launder)
- > Non-local correlation-based multimode transition model by Kozulovic (2007)
- Only steady computations performed

CRC 871

Motivation

Geometry Variances

Probabilistic Model

Results

Conclusions

8. Dresdner Probabilistik Workshop

Benedikt Ernst Slide 16/20 9 October 2015

© Leibniz Universität Hannover 2015

Comparison of the Original and Parameterized Blade Profile

→ Good agreement between the nominal and the parameterized reference

CRC 871

Motivation

Geometry Variances

el. deviation of isentropic efficiency in %

0.2

0.15

0.1

0.05

0

-0.05 - 0

-0.1

Probabilistic Model

Results

Conclusions

8. Dresdner Probabilistik Workshop

Benedikt Ernst Slide 17/20 9 October 2015

Scatter of Output Parameters

00800

Deviations of isentropic efficiency, flow coefficient and stage loading coefficient are shown relative to the reference.

-0.05 0 0.05 0.1 0.15 0.2 <u>v</u> rel. deviation of stage loading coefficient in %

B CO CO

Scatter range of isentropic efficiency Δη_{is,max} - Δη_{is,min} ≈ 0.25%
 Linear correlation between stage loading and isentropic efficiency
 No significant correlation between flow coefficient and isentropic efficiency

Correlation between Input and Output Parameters

CRC 871

Motivation

Geometry Variances

Probabilistic Model

Results

Conclusions

8. Dresdner Probabilistik Workshop

Benedikt Ernst Slide 18/20 9 October 2015

© Leibniz Universität Hannover 2015

Significant correlation between trailing edge angle and output parameters No correlation between max. thickness and output parameters

CRC 871

Motivation

Geometry Variances

Probabilistic Model

Results

Conclusions

8. Dresdner Probabilistik Workshop

Benedikt Ernst Slide 19/20 9 October 2015

Conclusions and Outlook

Conclusions

- > Profiles are well characterized by means of 12 geometric parameters.
- > Significant deviations of geometric parameters are found.
- High negative correlation between stagger angle and axial chord length of measured LPT blades

Significant correlation between leading edge angle and

- isentropic efficiency (negative)
- flow coefficient (positive)
- stage loading coefficient (negative)

Geometry variances of most designs lead to an increase in efficiency

Outlook

- Increase the number of measured LPT blades in our database
- > Further improvement of the CFD model and automation of the tool chain
- Analysis of local flow-related parameters
- Variation of operation points

Thank you for your attention!

Benedikt Ernst Institute of Turbomachinery and Fluid Dynamics ernst@tfd.uni-hannover.de

