

- Introduction
- Part 1: Basics of Statistics
- Part 2: Regression
- Part 3: Probabilistic System Analysis using Monte Carlo Methods

Example Model

Faculty of Mechanical Science and Engineering, Institute of Fluid Mechanics, Chair of Turbomachinery and Jet-Propulsion

Introduction of example model

7. Dresdner Probabilistik-Workshop

- Random number generator, web reference: <u>http://random.mat.sbg.ac.at/</u>
- Sampling method
- Correlation Control Algorithm/Joint Probability Distribution
- Statistics for the evaluation

7. Dresdner Probabilistik-Workshop

Tutorial Probabilistic System Analysis

Faculty of Mechanical Science and Engineering, Institute of Fluid Mechanics, Chair of Turbomachinery and Jet-Propulsion

¹ Dirk Roos et al. Design Reliability Analysis. 24th CAD-FEM Users' Meeting. International Congress on FEM Technology. Stuttgart. 2006

7. Dresdner Probabilistik-Workshop

Define criteria:

 $w_{\rm max} \ge 10 \ {\rm mm}$

$$\hat{P}_o = \frac{1}{n_{sim}} \sum_{k=1}^{n_{sim}} 1D_o(X^{(k)}) = \frac{n_o}{n_{sim}} \qquad D_o - \text{occurrence domain}$$

$$\hat{P}_o$$
 95% confidence interval

 SRS¹ (CMC)
 0.132
 0.104 - 0.165*

¹ Simple Random Sampling, $n_{sim} = 500$

* Clopper Pearson interval from *L. Sachs, J. Hedderich. Angewandte Statistik.* Springer. 2009 pp. 293

Sensitivity analysis

Result of probabilistic Simulation	Probability of failure	Sensitivities
pdf of input variables -roughly known (as in industry)		
-precisely known (rarely)		
Required number of deterministic runs	$n_{sim,LHS} \ge \frac{10}{\hat{P}_f}$	
Output		0.00 0.51

Latin Hypercube Sampling (LHS), $n_{sim} = 50$ and uncorrelated inputs

Anthill plots and rank correlation coefficient

Tutorial Probabilistic System Analysis

Sensitivity analysis

Faculty of Mechanical Science and Engineering, Institute of Fluid Mechanics, Chair of Turbomachinery and Jet-Propulsion

7. Dresdner Probabilistik-Workshop

Tutorial Probabilistic System Analysis

Rank correlation coefficient and confidence interval

RSM and Coefficient of Importance [2Bucher, 2009]

B

Basis: LHS, n_{sim} = 100 RSM 1: polynomial second order (21)

RSM 2: polynomial third order (56)

7. Dresdner Probabilistik-Workshop

Tutorial Probabilistic System Analysis

RSM and Coefficient of Importance Absolut error

$$Var(w_{max}) = 3.3$$

RSM and Coefficient of Importance [2Bucher, 2009]

Cross validation: R²_{MCCV} splitting ratio: 0.85 runs: 1000 [Beschorner et al., 2014]

В

Basis: LHS, $n_{sim} = 100$ RSM 1: polynomial second order (21)

RSM 2: polynomial third order (56)

Tutorial Probabilistic System Analysis

Robustness estimation

Result of probabilistic Simulation	Probability of failure	Sensitivities	Robustness
pdf of input variables -roughly known (as in industry)			
-precisely known (rarely)			
Required number of deterministic runs	$n_{sim,LHS} \ge \frac{10}{\hat{P}_f}$		
Output		0.54	

Robustness estimation

What is a robust Design?

engineering measures	statistical measures
 exceedance of thresholds Occurrence of undesirable sudden changes in the result values (e.g. local maximum of result quantity) Response of system instabilities (e.g. buckling) 	 Position of the mean values of the output quantities Magnitude of the coefficient of variation of the output quantities
	[³ Will et al., 2006]

Required number of simulations (n_{sim}) with Monte Carlo methods:

- Depends on the probability of the event
- Verification by confidence interval of the statistic measures

- Divide design space in fields of the manufacturing tolerances
- Conduct a MCS in each field
- Plot the variation of the output quantity over the design space
 - × design point
 - manufacturing tolerances

simulation space

Undesirable sudden changes in the result values

Application of Monte-Carlo methods for probabilistic investigations using optimized LHS under consideration of input parameter correlation

Result of probabilistic Simulation	Probability of failure	Sensitivities	Robustness	System improvement
pdf of input variables -roughly known (as in industry)				
-precisely known (rarely)				
Required number of deterministic runs	$n_{sim,LHS} \ge \frac{10}{\hat{P}_f}$	 Verification b Position of th quantities n_{si} minimum: n_{si} 	by confidence int the mean values of $m_m ≈ 50;$ $m_{sim} = no. inputs ·$	erval of the output + 1020
Output - one single MC Simulation provides all result quantities		50 A51		

7. Dresdner Probabilistik-Workshop

Tutorial Probabilistic System Analysis

Advantages*	Disadvantages*
 Accuracy of the output quantities is almost independent of the dimension of the input space (convergence rate is independent of the dimension of the input space - CMC) Consideration of all result variables within one MCS Working with deterministic "black box" models possible 	 Dependence of the quality of the stat. measures on the number of realizations n_{sim} rate of convergence is of order n_{sim}^{-1/2} (CMC)

* compared to other probabilistic methods

7. Dresdner Probabilistik-Workshop

- (1) Dirk Roos et al. Design Reliability Analysis. 24th CAD-FEM Users' Meeting. International Congress on FEM Technology. Stuttgart. 2006
- (2) Christian Bucher. Computational Analysis of Randomness in Structural Mechanics, Volume 3 of Structures and Infrastructures Series. CRC Press, May 2009.
- (3) J. Will, Christian Bucher. Statistische Maße für rechnerische Robustheitsbewertungen CAE gestützter Berechnungsmodelle. Weimarer Optimierungs- und Stochastiktage 3.0. 2006

Tutorial

Introduction into probabilistic methods and their application in engineering sciences with focus on monte carlo and response surface methods

> David Pusch André Beschorner Robin Schmidt

DRESDEN concept Exzellenz aus Wissenschaft