

Sensitivity analysis of a two-stage high pressure compressor using an extended Latin hypercube sampling

Robin Schmidt

Dresden, 08./09.10.2014

Probabilistic Analysis

Inputs, X

time consuming deterministic Model, non-linear behavior in the outputs, 10+ input variables

sensitivity analysis with Monte Carlo methods using Latin Hypercube sampling

CHARACTERISTIC:

each realization represents equal probability ΔP

APPROACH:

- define number of realizations n_{sim}
- determine $\Delta P=1/n_{sim}$ wide intervals on F(b)
- select one value at random from each interval

PROPERTIES:

- good representation of cdf with "few" realizations variance reduction
- more stable analysis outcomes than random sampling
- easier implementation than stratified sampling methods
- mean value and distribution function can be estimated unbiased

INITITAL POSITION

- define <u>group size</u> n_g and <u>level</u> I
- use "classic" LHS with $n_{sim,0} = n_g$ realizations

APPROACH

Use "small" <u>group size</u> and reach the desired n_{sim,N} by extension <u>level</u> times

IMPLEMENTATION

- reduplicate the intervals on F(b) if necessary
- per extension step only n_q values are added
- select one value at random from each free interval
- selection of the interval is based on D* as the largest negative distance between continuous and discrete cdf for each original interval

$$D^* = \min_{1 \le i \le n_{sim}} \left(\frac{i}{n_{sim}} - F(y_i) \right)$$

Iterative Restricted Pairing¹

¹ on the basis of: Ramesh A. Dandekar, Michael Cohen, and Nancy Kirkendall. Sensitive micro data protection using latin hypercube sampling technique. In Inference Control in Statistical Databases, page 117–125. Springer, 2002.

generation of standard normal distributions

level	group size		
	5	10	20
3	15	30	60
4	20	40	80
6	30	60	120
8	40	80	160
10	50	100	200
12	60	120	240
13	65	130	260
16	80	160	320

 $\widetilde{r} = [0, 0.25, 0.5, 0.75, 0.99]^T$

Table 1: Experimental matrix of eLHS

with 1000 repetitions and comparison with LHS of same size

0	eLHS: n _{sim} = 5; level = 3; LHS: n _{sim} = 15
Δ	eLHS: n _{sim} = 5; level = 4; LHS: n _{sim} = 20
	eLHS: n _{sim} = 5; level = 10; LHS: n _{sim} = 50
\$	eLHS: n _{sim} = 5; level = 16; LHS: n _{sim} = 80
0	eLHS: n_{sim} = 20; level = 3; LHS: n_{sim} = 60
Δ	eLHS: n_{sim} = 20; level = 4; LHS: n_{sim} = 80
	eLHS: n_{sim} = 20; level = 10; LHS: n_{sim} = 200
\diamond	eLHS: n_{sim} = 20; level = 16; LHS: n_{sim} = 320

- correlation error of eLHS is in the majority of cases below that one of the LHS
- for high correlation values at low group size correlation control algorithm is not able to deliver the same performance for the eLHS as for the LHS with correspondingly I times higher number of realizations.

- level 4, 8 and 16 lie closely one upon the other for eLHS and LHS
- characteristic shape of the deviations due to the allocation of intervals

- test case IC09 delivered by Rolls-Royce Germany (RRD)
- resembles 2 stages of a typical high pressure compressor (hpc)
- boundary and initial conditions are given by radial profiles at inlet, fixed mass flow at the outlet
- data transfer between the blocks is done by mixing planes

- geometric parameterization was done with the parameter model of Heinze et al.³; geometry variations with delta-parameter model of Lange et al.⁴
- one averaging section in spanwise direction is sufficiently accurate, see Lange et al.⁵

- variation of Rotor 3 only
- always the same grid setup was used
- main characteristics of the MCS:

sampling method:	extended Latin Hypercube (eLHS)
correlation control:	iterative Restricted Pairing
shots:	n _g =30, level l=4

setup, control and evaluation of the MCS with ProSi

 Col is based on meta models and calculated with the Coefficient of Determination R²

$$CoI_{ij} = R_j^2 - R_{ij}^2$$

- assessment of the quality of the response surface with cross-validation: Monte Carlo cross-validation (MCCV) by Beschorner⁶ with splitting ratio of 0:85 and number of runs of 1000
- result quantity total pressure ratio π of the two-stage compressor
- approximation with a first order polynomial without mixed terms in each level

level	1	2	3	4
SCR	1:813	3:563	5:375	7:063
R ²	0:958	0:913	0:915	0:899
CoD _{MCCV}	0:748	0:834	0:876	0:865
average R ² - CoD _{MCCV}	0:853	0:874	0:895	0:882

 Col is based on meta models and calculated with the Coefficient of Determination R²

	$CoI_{ij} = R_j^2 - R_{ij}^2$					
	1. order (R ² = 0.913)	ality of the res	ponse surface	e with cross-v	alidation:	
α_{LE}		lidation (MCC)	V) by Bescho	rner ⁶ with split	tting ratio of	
fillet		ins of 1000	ins of 1000			
с						
α_{LE}		essure ratio π	of the two-sta	age compress	sor	
ax _{pos}	0.001	ⁱ irst order poly	nomial withou	ut mixed terms	s in each level	
tan _{pos}	0.001	1 5				
X_{tmax}	0.001					
a_{LE}	0.001	1	2	3	4	
a _™	0.004	1.813	3.263	5.375	7:063	
W _{max}	0.007	1.015	3.303	5.575	7.005	
b _{LE}	0.016	0:958	0:913	0:915	0:899	
X _{wmax}	0.056	0:748	0:834	0:876	0:865	
b _{TE}	0.064	0.853	0.874	0.892	0.885	
t _{max}	0.082		0.074	0.000		
γ	0.657					
0	0.33	0.66				

- biggest advantages over LHS if extension is considered before the start of a probabilistic simulation
- method does not maintain the LHS design in each level
- a more variable extension is achieved compared to duplication of the realizations
- If at a certain level all intervals are occupied, the extended sample corresponds to a LHS
- Each extension represents an LHS design by itself
- application of iterative RP leads to low deviations from the target correlation for LHS and eLHS despite small number of realizations and high correlations
- with the sample extension method it is possible to use the statistical quality, e.g. confidence intervals, of certain statistical measures as a termination criterion
- extension results in an increased gain of information from a probabilistic analysis

European Union's Seventh Framework Program for research, technological development and demonstration under grant agreement number ACP3-GA-2013-605036.

Rolls–Royce Deutschland Ltd & Co KG for the provision of the deterministic model and the support for questions

- A. Dandekar, Michael Cohen, and Nancy Kirkendall. Sensitive micro data protection using latin hypercube sampling technique. In Inference Control in Statistical Databases, page 117–125. Springer, 2002.
- (2) L. Sachs and J. Hedderich. Angewandte Statistik. Springer, 13. edition, 2009
- (3) Kay Heinze, Marcus Meyer, Jens Scharfenstein, Matthias Voigt, and Konrad Vogeler. A parametric model for probabilistic analysis of turbine blades considering real geometric effects. CEAS Aeronautical Journal, 5(1):41–51, 2014.
- (4) Alexander Lange, Konrad Vogeler, Volker Gümmer, Henner Schrapp, and Carsten Clemen. Introduction of a parameter based compressor blade model for considering measured geometry uncertainties in numerical simulation. In ASME Turbo Expo 2009: Power for Land, Sea, and Air, page 1113–1123. American Society of Mechanical Engineers, 2009.
- (5) Alexander Lange, Matthias Voigt, Konrad Vogeler, Henner Schrapp, Erik Johann, and Volker Gümmer. Probabilistic CFD simulation of a high-pressure compressor stage taking manufacturing variability into account. In ASME Turbo Expo 2010: Power for Land, Sea, and Air, page 617–628. American Society of Mechanical Engineers, 2010.
- (6) André Beschorner, Matthias Voigt, and Konrad Vogeler. Monte carlo cross-validation for response surface benchmark (to be published). In Proceedings of the 12th International Probabilistic Workshop, Weimar, 2014. International Probabilistic Workshop.