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� The objective of UMRIDA is to upgrade the TRL of UQ in aeronautics to level 5-6

� Within UMRIDA different methodologies to deal with UQ will be investigated by research 

groups from:

- 6 European airframe and engine industries

- 13 major aeronautical research establishments and academia  

@VUB: 

UQ methods for efficient handling of large number of uncertainties

� Reduced basis approach using polynomial chaos method

� In Doostan et al. (2007) such an approach was used within the context of intrusive 

Polynomial Chaos

� Here the methodology is extended to non-intrusive PC and is applied to 2D and 

3D industrial applications
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� Uncertainty in physical properties, input data and model parameters 

result in uncertainties in the system output. 

� For the design refinement and optimization, it is necessary to include all 

uncertainty information in the output results using UQ schemes.

� Many complex CFD calculations (e.g. Turbomachinery) require 3D fine 

computational mesh, small time-step and high-dimensional space for 

stochastic analysis. 

� These  dramatically increases the computational cost that can be partially 

reduced using efficient UQ schemes.
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� Classical uncertainty quantication schemes (e.g., Monte Carlo, polynomial 

chaos)  suffer from the curse of dimensionality. 

� To overcome curse of dimensionality several schemes  have been 

proposed. Examples are:

� Efficient sampling methods(e.g. Sparse sampling)

� Sensitivity analysis (e.g. Sobol indicies)

� Surrogate modeling (e.g. Kriging)

� Model Reduction (e.g. GSD)

� Multilevel Monte Carlo

� In practice a single technique may not be sufficient, and combination of 

techniques need to be employed.

� In this study we focus on the “POD-based Model Reduction” approach.



� All uncertainties were 

introduced in the 

governing equation.

� System of equations was 

solved

� Needed to rewrite code

� Not possible for complex 

3D applications
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k=0,1,2,3….P

p=order of PC

n=#uncertainties
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� Uncertain input parameters: IC, BC, geometry, modeling parameters

� PC expansion:

� Statistical solution
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P+1=(p+ns)!/p!ns!

p=order of PC

ns=# uncertainties

Computational 

model

Input parameters:
a1=a10+a11*ζ1

a2=a20+a21*ζ2

……

ans=an0+an1*ζns

Output solution
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� PC terms can be calculated via 

1. Numerical quadrature 

PC approximation of the solution:

Inner product:
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# deterministic samples increases exponentially with increasing pc order  and  ns

S=(p+1)^ns deterministic samples

p=2,ns=5 �243 samples

p=2,ns=10 �59049 samples

p=3,ns=10 � 1048576 samples
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Where:

:is PDF of 

:are quadrature points

: are weights of quadrature points

: are sample solution

f ζ
jζ

jw

This integral can be 
solved using numerical 
quadrature method
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2. Regression method

� PC approximation of the solution

� Matrix can be solved by over sampling for PC coefficients   
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# deterministic samples increases exponentially with increasing pc order  and  ns

S=2(P+1) deterministic samples

p=2,ns=5 �42 samples

p=2,ns=10 �132 samples

p=3,ns=10 � 572 samples

Oversampling
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Solution samplesPC coefficients



Dresdner Probabilistik-Workshop, 08th-09th 

October, 2014 10

� The POD-based model reduction is a method that provides an optimal basis (or 

modes) to represent the dynamic of a system.

� Several model reduction techniques have been proposed for uncertainty quantitation. 

Two informative examples are:

� Generalize Spectral Decomposition (GSD) Nouy (2007)

� An intrusive model reduction technique for chaos representation of a SPDE 

Doostan et al. (2007)

� The model reduction used here is a POD-based model reduction scheme, similar to 

the one proposed by Doostan et al. (2007), but in non-intrusive  framework. 



� Ideal expansion: 

Karhunen-Loeve = POD
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few ui to calculatem=very small (# of dominating eigenvalues of POD)

POD requires covariance R(x,y) of u which is unknown!
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Basic idea: Restrict the number of PC expansions coefficients that have to 

be calculated.

� POD eigenvalues decay very fast.

� First few eigenvalues contain all the information



� Calculate PC coefficients (ui(x)) on a coarse mesh

� Calculate covariance matrix R(x,y)

� Karhunen-Loeve expansion (POD) 

� Few ui(x) to calculate on a fine grid

� Solution on fine grid can be written as:

� Statistics: 

� 2(m+1) samples are needed in fine grid, where m<<P
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Solution in coarse 

grid
Covariance POD

Final solution in 

fine grid

Idea is to extract the 

optimal orthogonal basis 

via cheap calculations 

on a coarse mesh and 

then use them for the 

fine scale analysis.
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Covariance function

Geometry realization 

using KL expansion
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b=0.2
σ=0.0001

b=0.2
σ=0.001

b=0.05
σ=0.0001



� AoA=2.79°

� Mach #= 0.734 

� Re # = 6.5x106

� Uncertain profile with10 terms in KL expansion and 
σ’=0.001 & b=0.05

� Polynomial order: 3

� Coarse grid: 3.0x103

� Fine grid: 4.4x104

� Covariance: ρ, ρu, ρv and ρE 

� Turbulence model: Spallart Allmaras

� Convective terms: 2nd-order upwind
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ϵ : measure of dominating eigenvalues
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CPU time:

Classical PC:

572 samples in fine mesh

= 572 t

Reduced  approach:

572 samples in coarse grid 

+20 samples in fine grid

=20t+572t/14

~ = 65t

� ~ 9 times efficient 

Coarse grid: 3.0x103

Fine grid: 4.4x104 

� grid ratio ~= 14 

error= 0.6524%
error= 13.1216%

error=   8.7236%
error=  15.3613%
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CPU time:

Classical PC:

572 samples in fine mesh

= 572 t

Reduced  approach:

572 samples in coarse grid 

+44 samples in fine grid

=44t+572t/14

~ = 85 t

� ~ 6-7 times efficient 

Coarse grid: 3.0x103

Fine grid: 4.4x104 

� Grid ratio ~= 14 

% difference in mean and std of pressure coefficient

Mean and std of pressure coefficient 99.0=ε

error= 0.1702%

error= 2.4958%

error=   2.1165%

error=   1.4653%

Become more efficient  for higher order PC 
(If more accurate statistics are needed)



� Uncertain parameters (Boundary conditions):
1.Total pressure profile at inlet: uniform distribution, variance = 5% of mean

2. Static outlet pressure: uniform distribution, variance =2% of mean

� Rotational speed:17188 rpm

� Polynomial order: 2

� Coarse grid: 1.18x105

� Fine grid: 8.43x105

� Covariance: P

� Turbulence model: Spallart Allmaras

� Convective terms: 2nd-order upwind

Dresdner Probabilistik-Workshop, 08th-09th 

October, 2014 23

Samples of total inlet pressure profile
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Pressure field on:

• Hub

• 25% span of  blade

• Mid span of blade

• 75% span of blade

• tip

Pressure distribution around 

the blade at mid span
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Mean and standard deviation of static pressure around the blade at mid span 

CPU time Classical PC method : total 12 samples in fine grid � CPU time =12t

Reduced approach :  6 samples in fine grid + 12 samples in coarse grid  

�CPU time = 6t +12t/8 = 7.5t  (almost two times efficient !!!)

Become more efficient if one consider high dimensional stochastic problems!!!

(i.e., geometrical uncertainties)



� The performance of a non-intrusive POD-based model reduction scheme 

for uncertainty quantification is evaluated for 2D and 3D cases  using 

Fluent and NUMECA software.

� The reduced-order model is able to produce acceptable results for the 

statistical quantities.

� Memory requirement and CPU time for the reduced model is found to be 

much lower than classical methods.

� The performance of the model reduction scheme is more visible in very 

high dimensional stochastic problems.

� Additional computations for more complex cases involving large number 

of random variables will be performed.

� Higher order moments will be evaluated.
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