

Forecasting the Repair of HPT NGVs

Daniel Giesecke, Jens Friedrichs,

Thomas Kenull Institute of Jet Propulsion and Turbomachinery (IFAS) TU Braunschweig Matthias Binner Power Plant Engineering GE/CFM MTU Maintenance Hannover Martin Siegert Sales Support & Customer Service MTU Maintenance Zhuhai

Content

- 1. Background & aims/objectives
- 2. **Basics**
- 3. Construction of a Bayesian belief network (BBN)
 - 1. Standard BBN
 - **Modified BBN** 2.
- Verification & Evaluation 4.
- Conclusions 5.

9th October 2014 | Forecasting the Repair of HPT NGVs |

IFAS Institut für Flugantriebe und Strömungsmaschinen

Background Why using BBN for engine maintenance?

\Rightarrow precise hardware forecast is badly required

Aim and Objectives

<u>Aim:</u>

- developing a method for forecasting the repair of the HPT NGV
- showing the potential benefit in case of inadequate data density

Framework Conditions Learning Data Set

Boundary conditions:

- piece-part repair level
- no unscheduled SV
- engines with recent modification levels
- complete data set
- \Rightarrow ~4500 NGV data sets or ~195 jet engines

Framework Conditions Bayesian Belief Net (BBN)

Why BBN?

- Shop Visits (SV) determined by various influence parameter which are not analytical acquired
- modifications and further developments shall require little time and effort
- implementing expert knowledge
- manageable in case of imprecise data

Airfoil Replacement

High Pressure Turbine Nozzle Guide Vane 1 (HPT NGV 1) **Repair Possibilities – Simplification**

3. BBN Construction 4

Repair effort

4. Verification/Evaluation 2

Final inspection

Coating

Machining

Joining

Preparing

Λ

Separating

AFR

High Pressure Turbine Nozzle Guide Vane 1 (HPT NGV 1) Degradation Mechanisms

Main Influence Parameter Input Data

Material	Region	Wing Position	Rating Level	Repairhistory	Customer Segment	Cycles
DSR'142	Australasia	Twin Engine	Low	New	AT/BJ – Business Jet Operator	<1500
X-40	Eastern Europe	Four Engine – Inside	Medium	Small FR	AT/CA – Charter Airlines	1500 to 2000
N5	Latin America (Mexico)	Four Engine – Outside	High	1st FR	AT/FA – Freight Airlines	2000 to 2500
	Middle East	Three Engine – Upper			AT/LC – Low Fare Carrier	2500 to 3000
	North America	Three Engine – Outside		5th FR	AT/MA – Major Airlines	3000 to 3500
	Northeast Asia			AFR	AT/SEC – Secondary Airlines	3500 to 4000
	Western Europe					4000 to 4500
	World Wide					4500<

Tab. 1 Parameter influences with its characteristics.

Construction of a BBN Standard BBN

Fig. 15 The standard net, [3].

- simplest net architecture
- equal weighting of parameters

Construction of a BBN Quadratic Convergence

Cramer's contingency coefficient:

$$C = \sqrt{\frac{\phi^2}{\min\{k-1, m-1\}}},$$

 ϕ^2 : Mean value of quadratic convergence

Maximum value of

k: row m: column

- Min. / Max.values:
 - 1. $C = 0 \longrightarrow$ statistical independence
 - 2. $C = 1 \rightarrow$ ideal statistical dependence
- $C \ge 0.5$: strong correlation between two parameters

Results:

Strong correlation between region and...

- ... rating level (C = 0.84)
- ... customer segment (C = 0.64)
- ...material (C = 0.57)
- ...wing position (C = 0.49)

1. Background 2

Strong correlation between material and wing position (C = 0.48)

9th October 2014 | Forecasting the Repair of HPT NGVs |

7. Dresdner Probabilistik-Workshop |

Slide 11

2. Basics 5 3. BBN Construction 2/4

4. Verification/Evaluation 2

0 < C < 1

Institut für Flugantriebe und Strömungsmaschinen

Construction of a BBN Expert Knowledge

- in average almost 20 years of experience per person
- up to almost 30 years of experience for one person

Procedure:

• rank the main influences which affect the next repair

Fig. 16 Expert knowledge presentation, [3].

Construction of a BBN Final Net Architecture – Modified Net

Case	Evidences	Expected	Standard net	Modified net	Legend: 🗸	good forecast quality		
1	2nd FR	~ 100% AFR	\checkmark	\checkmark	0	medium forecast quality		
2	Middle East, N5, High	~ 100% AFR	\checkmark	~	X	poor forecast quality		
3	North America, 2nd FR, X-40	~ 100% AFR	✓	~			-	
4	Middle East, Cycles ↑	AFR ↑	0	0			BBN Modified B	BN
5	North America, Cycles ↑	AFR ↑	0	✓	100%	о <i>станала</i> 1		
6	Cycles ↑	$AFR_{Outside} > AFR_{Inside}$	X	Х	200	A		V
7	Cycles>3000, DSR'142, High	~ 100% AFR	~	✓	2 60%		ب	- 8
8	North America, Cycles>2500	70% AFR, 30% FR	x	~	R-Rate			
9	High, AT/FA	75% AFR, 25% FR	Х	✓	AFR		ษ์	
10	New	10% Serviceable	0	0	20%	ι Ψ		
11	AFR	Serviceable $\downarrow,$ AFR \uparrow	0	0	0%	1750 2250	2750 3250	3750 4250
	Tab. 2 Tr	end forecasting test cases	s, [3].				Cycles [-]	
						Fig. 18 Pla	ausibility case five, [3].	
010-W								
A A A A A A A A A A A A A A A A A A A	Universität 9 th C Braunschweig7. D	th October 2014 Forecasting the Repair of HPT NGVs			Slide 14		AS Institut für und Ström	Flugantriebe ungsmaschinen
1. Background 2 2. Basics 5 3. BBN Construction 4 4. Verification/Evaluation 1/2 5. Conclusions 1							-	

Evaluation Results

Evaluation data set:

- percentage distribution correspond to training data
- limited data used
- 41 test engines:
 - 1. 29 **current** engines from August 2012 till January 2013
 - 2. 2 unusual engines
 - 3. 10 representative engines from 2010 till 2012

Jet engines	Standard BBN	Modified BBN
All	77%	83%
Current	80%	85%
Unusual	50%	50%
Representative	73%	85%

Tab. 3 List of high accuracy per net, [3].

 \Rightarrow With up to 85% the repair of the HPT NGV has been correctly forecasted!

Conclusion

- identification of relevant **input parameter** and setting appropriate **boundary conditions** are of great significance
- modified BBN: quadratic convergence and Cramer's contingency coefficient
 combined with expert knowledge has been developed
 - \Rightarrow very statisfactory behaviour by forecasting trends
 - \Rightarrow forecast accuracy of 83% for all investigated engines
- very promising potential for contract proposals and capacity planning

Outlook:

- combining BBN with other artificial intelligence methods
- investigating other modules
- · determing the business value

Thanks for Listening!

References:

- [1] Rupp, O. C., 2000. "Vorhersage von Instandhaltungskosten bei der Auslegung ziviler Strahltriebwerke". PhD thesis, Lehrstuhl für Flugantriebe, Technische Universität München.
- [2] Berkholz, D., Schmidt, M., and Nyhuis, P., 2008. "From volatile maintenance data forecasting to reliable capacity planning". Proceedings of the World Congress on Engineering and Computer Science, October.
- [3] Giesecke, D., Friedrichs, J., Kenull, T., Binner, M. and Siegert, M., 2014. "A Method for Forecasting the Condition of HPT NGV's by using Bayesian Belief Networks and a Statistical Approach", Proceedings of ASME Turbo Expo(GT2014-25464), June 3-7.
- [4] MTU Maintenance Hannover GmbH.
- [5] Ebmeyer, C., Wensky, T., Friedrichs, J., and Zachau, U., 2011. "Evaluation of total engine performance degradation based on modular efficiencies". Proceedings of ASME Turbo Expo(GT2011-45839), June 6-11.
- [6] Kurz, R., 2005. "Gas Turbine Performance". In: 34th Turbomachinery Symposium Proceedings, Turbomachinery Laboratory, Texas A&M University, College Station, Houston, September, pp. 131-146.

9th October 2014 | Forecasting the Repair of HPT NGVs |

