



# Monte Carlo cross validation for response surface benchmark

André Beschorner, Matthias Voigt, Konrad Vogeler







# Introduction

- Variants of cross validation
- Results of Monte Carlo cross validation
- Summary





**Response Surface Benchmark** 

 Cross validation is a method to estimate the prediction quality of a response surface



 Already mentioned in 1951 by Charles Mosier

Charles I Mosier. The need and means of cross-validation. i. problems and designs of cross-validation. *Educational and Psychological Measurement*, 1951.

 Used more intensively since the 70's





## We have R<sup>2</sup>(CoD), MSE, ... ?

Computation and validation of model use the same database

Describes fit between y and  $\tilde{y}$ 



This results in an overestimation of the model quality as long as n is "low".

Model:

140 input variables





## We have R<sup>2</sup>(CoD), MSE, ... ?

Computation and validation of model use the same database

Describes fit between y and  $\tilde{y}$ 



This results in an overestimation of the model quality as long as n is "low".

Model:

140 input variables





## We have R<sup>2</sup>(CoD), MSE, ... ?

Computation and validation of model use the same database

Describes fit between y and  $\tilde{y}$ 



This results in an overestimation of the model quality as long as n is "low".

Model:

140 input variables





## We have R<sup>2</sup>(CoD), MSE, ... ?

Computation and validation of model use the same database

Describes fit between y and  $\tilde{y}$ 



This results in an overestimation of the model quality as long as n is "low".

Model:

140 input variables

SCR = n/c



## What is cross validation?



Faculty of Mechanical Science and Engineering, Institute of Fluid Mechanics, Chair of Turbomachinery and Jet-Propulsion





## What is cross validation?



Faculty of Mechanical Science and Engineering, Institute of Fluid Mechanics, Chair of Turbomachinery and Jet-Propulsion







Aim of cross validation

- Should avoid quality overestimation for small datasets
- Show the prediction quality of the model



For estimation of prediction quality, it is necessary validate the model against different samples.

New data is seldom available.

→ Split the data

into *training samples* 

and validation samples





Example:

1. Leave out some (at least one) samples for the data fitting



7. Dresdner Probabilistik-Workshop





#### Example:

1. Leave out some (at least one) samples for the data fitting







#### Example:

2. Compute response surface with reduced data set







### Example:

3. Use reduced model and left out samples to compute quality criteria



7. Dresdner Probabilistik-Workshop





#### Example:

#### 4. Repeat this procedure



7. Dresdner Probabilistik-Workshop





Example:

4. Repeat this procedure

## and average the validation results



7. Dresdner Probabilistik-Workshop





## Introduction

- Variants of cross validation
- Results of Monte Carlo cross validation
- Summary





Different kinds of data splitting:

- Leave one out cross validation (LOOCV)
  - Every single sample is used once for validation
  - Number of runs equals number of samples
- K-fold cross validation
  - Data is split into k groups
  - k validation runs that are averaged
- Monte Carlo cross validation (MCCV)
  - Samples are selected randomly
  - Number of repetitions and splitting ratio is independent selectable





Different kinds of quality criteria

- Error based criteria
  - e.g. PRESS predictive error sum of squares
    - Not scaled
    - Not comparable between different data sets
- R<sup>2</sup> type criteria
  - Same calculation as CoD but using only validation samples
  - For LOOCV, R<sup>2</sup> can be computed from PRESS
  - For MCCV it is called CoD<sub>MCCV</sub>





- Introduction
- Variants of cross validation
- Results of Monte Carlo cross validation
- Summary



## MCCV results



Faculty of Mechanical Science and Engineering, Institute of Fluid Mechanics, Chair of Turbomachinery and Jet-Propulsion

1. Quality estimation for low SCR

CoD





## MCCV results



Faculty of Mechanical Science and Engineering, Institute of Fluid Mechanics, Chair of Turbomachinery and Jet-Propulsion

1. Quality estimation for low SCR

#### CoD vs. CoD<sub>MCCV</sub>







1. Quality estimation for low SCR

#### CoD vs. CoD<sub>MCCV</sub>



The response surfaces computed with 200 Samples are 15-19% worse than the best RS@ high SCR





#### 1. Quality estimation for low SCR

CoD vs.  $CoD_{MCCV}$  – complete test case comparison



 $\rightarrow$  The CoD<sub>MCCV</sub> showed no overestimation in 19/22 test cases (86%)

7. Dresdner Probabilistik-Workshop





2. Ability to estimate target CoD - By averaging CoD and  $CoD_{MCCV}$ 



→ Difference between this value and the current  $CoD_{MCCV}$  shows the possible improvement, if the database would be increased

→ For 91% of the test cases the target CoD was correctly predicted in the complete SCR range





- 3. Correctness in model selection
  - $\rightarrow$  Comparison of 4 model quality criteria

CoD, CoD\_{MCCV'} CoD\_{MCCV\_AV'} rme\_{cv}

to a benchmark criteria: mes\_xk

mes\_xk = mean error / standard deviation, computed with
x-thousand independent samples

Examples:

| H5 |    | CoD   | Сормсси |       | rme   | CoD   | СоДмсси |       | v rme   |  |
|----|----|-------|---------|-------|-------|-------|---------|-------|---------|--|
|    | с  | 60    | 60      | 60    | 60    | 100   | 100     | 100   | 100     |  |
| 1  | 21 | 0.853 | 0.746   | 0.800 | 0.105 | 0.915 | 0.841   | 0.878 | 0.06138 |  |
| 2  | 41 | 0.940 | 0.572   | 0.756 | 0.168 | 0.948 | 0.840   | 0.894 | 0.06140 |  |
| 3  | 61 |       |         |       |       | 0.962 | 0.748   | 0.855 | 0.085   |  |





- 3. Correctness in model selection
  - $\rightarrow$  Comparison of 4 model quality criteria

CoD, CoD\_{MCCV'} CoD\_{MCCV\_AV'} rme\_{cv}

to a benchmark criteria: mes\_xk

mes\_xk = mean error / standard deviation, computed with
x-thousand independent samples

Examples:

| H5 |    | CoD   | Сормсси | CoDmccv_av | rme   | mes_5k | CoD   | Сормсси | CoDmccv_av | rme     | mes_5k |
|----|----|-------|---------|------------|-------|--------|-------|---------|------------|---------|--------|
|    | с  | 60    | 60      | 60         | 60    | 60     | 100   | 100     | 100        | 100     | 100    |
| 1  | 21 | 0.853 | 0.746   | 0.800      | 0.105 | 0.376  | 0.915 | 0.841   | 0.878      | 0.06138 | 0.366  |
| 2  | 41 | 0.940 | 0.572   | 0.756      | 0.168 | 0.396  | 0.948 | 0.840   | 0.894      | 0.06140 | 0.332  |
| 3  | 61 |       |         |            |       |        | 0.962 | 0.748   | 0.855      | 0.085   | 0.359  |





- 3. Correctness in model selection
  - $\rightarrow$  Comparison of 4 model quality criteria

CoD, CoD\_{MCCV'} CoD\_{MCCV\_AV'} rme\_{cv}

to a benchmark criteria: mes\_xk

mes\_xk = mean error / standard deviation, computed with
x-thousand independent samples

Examples:

|   | H5   | CoD         | <b>CoD</b> MCCV | CoDmccv_av | rme   | mes_5k | CoD   |       | CoDmccv_av | rme     | mes_5k   |
|---|------|-------------|-----------------|------------|-------|--------|-------|-------|------------|---------|----------|
|   | с    | 60          | 60              | 60         | 60    | 60     | 100   | 100   | 100        | 100     | 100      |
| ſ | 1 2  | 0.853       | 0.746           | 0.800      | 0.105 | 0.376  | 0.915 | 0.841 | 0.878      | 0.06138 | 0.366    |
|   | 2 43 | 0.940       | 0.572           | 0.756      | 0.168 | 0.396  | 0.948 | 0.840 | 0.894      | 0.06140 | 0.332    |
|   | 3 63 | 1           |                 |            |       |        | 0.962 | 0.748 | 0.855      | 0.085   | 0.359    |
| H | 5    | CoD         |                 | CoDmccv_av | rme   | mes_5k | CoD   |       |            | AV rme  | e mes_5  |
|   | с    | 300         | 300             | 300        | 300   | 300    | 2200  | 2200  | 2200       | 220     | 0 2200   |
| 1 | 21   | 0.841       | 0.817           | 0.829      | 0.066 | 0.356  | 0.827 | 0.824 | 0.826      | 0.046   | 73 0.343 |
| 2 | 41   | 0.905       | 0.857           | 0.881      | 0.057 | 0.287  | 0.900 | 0.896 | 0.898      | 0.036   | 17 0.259 |
| 3 | 61   | 0.912 0.851 |                 | 0.882      | 0.058 | 0.290  | 0.903 | 0.897 | 0.900      | 0.036   | 00 0.258 |
| - |      |             |                 |            | 0.44- |        |       | 0.005 |            | 0.004   |          |





3. Summary of Model selection results

| Total      | Total % |
|------------|---------|
| CoD        | 0.59    |
| CoDmccv    | 0.68    |
| CODMCCV_AV | 0.75    |
| rme cv     | 0.75    |

| LOW SCR         | T1 | T2 | Т3 | T4 | B1 | <b>B2</b> | <b>B3</b> | <b>B4</b> | <b>B</b> 5 | <b>B6</b> | H1 | H2 | H3 | H4 | H5 | H6 | H1 | H2 | H3 | H4 | H5 | H6 | H1 | H2 | H3 | H4 | H5 | H6 | sum | %    |
|-----------------|----|----|----|----|----|-----------|-----------|-----------|------------|-----------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|------|
| CoD             | 1  | 0  | 1  | 0  | 0  | 0         | 0         | 1         | 0          | 1         | 0  | 1  | 1  | 1  | 0  | 1  | 0  | 1  | 1  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 12  | 0.43 |
| <b>CoD</b> мccv | 1  | 0  | 1  | 0  | 0  | 1         | 0         | 1         | 1          | 0         | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 0  | 1  | 1  | 1  | 1  | 0  | 1  | 17  | 0.61 |
| CODMCCV_AV      | 1  | 1  | 1  | 0  | 1  | 1         | 0         | 1         | 0          | 0         | 0  | 1  | 1  | 1  | 0  | 1  | 1  | 0  | 0  | 0  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 18  | 0.64 |
| rme ov          | 1  | 1  | 1  | 0  | 1  | 1         | 0         | 1         | 1          | 0         | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 0  | 1  | 1  | 1  | 1  | 0  | 1  | 19  | 0.68 |
| High SCR        | T1 | T2 | Т3 | Т4 | B1 | <b>B2</b> | <b>B3</b> | <b>B4</b> | <b>B5</b>  | <b>B6</b> | H1 | H2 | H3 | H4 | H5 | H6 |    |    |    |    |    |    |    |    |    |    |    |    | sum | %    |
| CoD             | 1  | 1  | 0  | 0  | 1  | 1         | 1         | 1         | 1          | 1         | 1  | 1  | 1  | 1  | 1  | 1  |    |    |    |    |    |    |    |    |    |    |    |    | 14  | 0.88 |
| <b>CoD</b> мccv | 1  | 1  | 1  | 1  | 1  | 0         | 1         | 0         | 0          | 1         | 1  | 1  | 1  | 1  | 1  | 1  |    |    |    |    |    |    |    |    |    |    |    |    | 13  | 0.81 |
| CODMCCV_AV      | 1  | 1  | 1  | 0  | 1  | 1         | 1         | 1         | 1          | 1         | 1  | 1  | 1  | 1  | 1  | 1  |    |    |    |    |    |    |    |    |    |    |    |    | 15  | 0.94 |
| rme cv          | 1  | 1  | 1  | 1  | 1  | 0         | 1         | 1         | 0          | 1         | 1  | 1  | 1  | 1  | 1  | 1  |    |    |    |    |    |    |    |    |    |    |    |    | 14  | 0.88 |





3. Improvements in model selection ability with a refined criteria

prime/s = **pr**edictive **m**ean **e**rror / **s**tandard deviation



Interpretation:

prime/s = 0.4

While predicting new data the meta model error will be about 40% of the standard deviation of the result vector

#### Computation:

Uses different MCCV criteria

And the internal distribution of these criteria

Details tbp...





#### 3. Summary of Model selection results including prime/s

|                 |    |    |    |    |    |           |            |            |           |           |    | Total |            |     |    |    | %    | 6  |    |    |    |    |    |    |    |    |    |    |     |      |
|-----------------|----|----|----|----|----|-----------|------------|------------|-----------|-----------|----|-------|------------|-----|----|----|------|----|----|----|----|----|----|----|----|----|----|----|-----|------|
|                 |    |    |    |    |    |           |            |            |           |           |    |       | CoD        |     |    |    | 0.5  | 59 | Э  |    |    |    |    |    |    |    |    |    |     |      |
|                 |    |    |    |    |    |           |            |            |           |           |    |       | СоДмсси    |     |    |    | 0.6  | 58 |    |    |    |    |    |    |    |    |    |    |     |      |
|                 |    |    |    |    |    |           |            |            |           |           |    |       | CODMCCV_AV |     |    |    | 0.75 |    |    |    |    |    |    |    |    |    |    |    |     |      |
|                 |    |    |    |    |    |           |            |            |           |           |    |       | rme cv     |     |    |    | 0.7  | 75 |    |    |    |    |    |    |    |    |    |    |     |      |
|                 |    |    |    |    |    |           |            |            |           |           |    |       | prir       | ne/ | /s |    | 0.89 |    |    |    |    |    |    |    |    |    |    |    |     |      |
| LOW SCR         | T1 | T2 | T3 | T4 | B1 | <b>B2</b> | <b>B</b> 3 | <b>B</b> 4 | B5        | <b>B6</b> | H1 | H2    | H3         | H4  | H5 | H6 | H1   | H2 | H3 | H4 | H5 | H6 | H1 | H2 | H3 | H4 | H5 | H6 | sum | %    |
| CoD             | 1  | 0  | 1  | 0  | 0  | 0         | 0          | 1          | 0         | 1         | 0  | 1     | 1          | 1   | 0  | 1  | 0    | 1  | 1  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 12  | 0.43 |
| <b>CoD</b> MCCV | 1  | 0  | 1  | 0  | 0  | 1         | 0          | 1          | 1         | 0         | 1  | 1     | 0          | 1   | 1  | 1  | 1    | 0  | 0  | 0  | 1  | 0  | 1  | 1  | 1  | 1  | 0  | 1  | 17  | 0.61 |
| CODMCCV_AV      | 1  | 1  | 1  | 0  | 1  | 1         | 0          | 1          | 0         | 0         | 0  | 1     | 1          | 1   | 0  | 1  | 1    | 0  | 0  | 0  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 18  | 0.64 |
| rme dv          | 1  | 1  | 1  | 0  | 1  | 1         | 0          | 1          | 1         | 0         | 1  | 1     | 0          | 1   | 1  | 1  | 1    | 0  | 0  | 0  | 1  | 0  | 1  | 1  | 1  | 1  | 0  | 1  | 19  | 0.68 |
| prime/s         | 1  | 1  | 1  | 1  | 1  | 1         | 1          | 1          | 1         | 0         | 1  | 1     | 1          | 1   | 0  | 1  | 1    | 0  | 0  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 23  | 0.82 |
| High SCR        | T1 | T2 | Т3 | T4 | B1 | <b>B2</b> | <b>B</b> 3 | <b>B4</b>  | <b>B5</b> | <b>B6</b> | H1 | H2    | H3         | H4  | H5 | H6 |      |    |    |    |    |    |    |    |    |    |    |    | sum | %    |
| CoD             | 1  | 1  | 0  | 0  | 1  | 1         | 1          | 1          | 1         | 1         | 1  | 1     | 1          | 1   | 1  | 1  |      |    |    |    |    |    |    |    |    |    |    |    | 14  | 0.88 |
| CoDmccv         | 1  | 1  | 1  | 1  | 1  | 0         | 1          | 0          | 0         | 1         | 1  | 1     | 1          | 1   | 1  | 1  |      |    |    |    |    |    |    |    |    |    |    |    | 13  | 0.81 |
| CODMCCV_AV      | 1  | 1  | 1  | 0  | 1  | 1         | 1          | 1          | 1         | 1         | 1  | 1     | 1          | 1   | 1  | 1  |      |    |    |    |    |    |    |    |    |    |    |    | 15  | 0.94 |
| rme cv          | 1  | 1  | 1  | 1  | 1  | 0         | 1          | 1          | 0         | 1         | 1  | 1     | 1          | 1   | 1  | 1  |      |    |    |    |    |    |    |    |    |    |    |    | 14  | 0.88 |
| prime/s         | 1  | 1  | 1  | 1  | 1  | 1         | 1          | 1          | 1         | 1         | 1  | 1     | 1          | 1   | 1  | 1  |      |    |    |    |    |    |    |    |    |    |    |    | 16  | 1.00 |

1. Dresdner Probabilistik-Workshop





- Introduction
- Variants of cross validation
- Results of Monte Carlo cross validation
- Summary





Validation with CoD without CV

Use SCR to show reliability of CoD

 $\mathsf{CV}$ 

- + overestimation of RS quality is unusual
- + better in model selection
- + results are conform to the real model error
- Requires additional computations

MCCV

- + simple implementation
- + number of repetitions and splitting ratio is independent
- Result variance
- increasing computation time with model size and number of runs
- 7. Dresdner Probabilistik-Workshop





# Monte Carlo cross validation for response surface benchmark

André Beschorner\*, Matthias Voigt, Konrad Vogeler \*andre.beschorner@mailbox.tu-dresden.de





Backup – R<sup>2</sup><sub>adi</sub>





















